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a b s t r a c t

To enable next generation CAD tools to effectively support top-down design of products, a top-down
assembly design process is refined from the traditional product design process to better exhibit the
recursive-execution and structure-evolvement characteristics of product design. Based on the top-down
assembly design process, amulti-level assemblymodel is put forward to capture the abstract information,
skeleton information and detailed information involved. The multi-level assembly model is a meta-level
implementation and is easy to be extended. Moreover, the inheritance mechanisms are explored to
ensure the feasibility of information transferring and conversion between different design phases in the
top-down assembly design process. A top-down assembly design sample is analyzed at length to show
the application effects of the multi-level assembly model and the relevant inheritance mechanisms. In
addition, a practical topic about the model adaptation of existing CAD systems is also discussed for a
broader application of the top-down assembly design. Finally, the conclusion of the work and the future
directions for further exploration are given.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the rapid development of global economics environ-
ment,many newproducts possess the characteristics of great com-
plexity and scale, and need knowledge from multiple disciplines.
Therefore, how to design these products effectively and efficiently
is of great significance. Among various strategies for product de-
sign, the top-down approach is a quite prominent and natural way.
In a top-down approach an overview of the product is first formu-
lated, and each component (could be a part or a sub-assembly) is
then refined in greater detail, sometimes in many additional sub-
component levels, until the base components are defined exactly.
In thisway the complex designwork of a product is subdivided into
several simpler design works of sub-modules gradually and recur-
sively, hence to reduce the difficulty and complexity of the design.
Meanwhile, these subdivided works could be executed in parallel
once most of the interdependence among them has been prede-
termined. This parallelizabilitymakes design cooperation between
different groups possible.

Considering the importance of the top-down approach in prod-
uct design, computer-based tools and packages should be pro-
vided to help designers carry out the top-down product design
more easily and conveniently. Unfortunately, with the limited sup-
port of most commercial CAD software to the top-down product
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design nowadays, there are still many design works that cannot
be powered up by computers. This will waste too much time in
the product design and eventually delay the time the new prod-
uct enters the market. It is obviously a loss to both companies and
consumers.

To make next generation CAD tools supporting the top-down
product design better, the following fundamental issues should be
considered:

1. A reasonable top-down assembly design process underlaid
which is suitable for computerization.

2. An integrated multi-level assembly model for capturing infor-
mation in different levels of abstraction.

3. Various flexible mechanisms which ensure the transition and
association of design information between different design
phases.

The work here is exactly meant to explore the novel assembly
design process, assembly model and inheritance mechanisms that
are required by next generation CAD tools in order to support
top-down product design effectively. Specifically, in this paper,
a more accurately and compactly depicted top-down assembly
design process is refined from traditional product design process.
Based on the top-down assembly design process, we present a
multi-level assembly model which has the ability to capture the
important data and knowledge in design and thus can support
different stages of the top-down assembly design. This model
is a meta-level implementation and can support mainstream
CAD systems through adaptation and extension. Meanwhile, the
relevant inheritance mechanisms are explored to ensure the
effective transmission and evolvement of design information
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between different design phases in the whole product design
process.

The rest of the paper is organized as follows. Section 2
reviews some previous studies related to this work. Section 3
introduces the top-downassembly designprocess and analyzes the
requirements for the corresponding computer-based supporting
tool. In Section 4 we give the details of a multi-level top-down
assembly model and Section 5 describes various inheritance
mechanisms for top-down assembly design. Section 6 shows a top-
down assembly design sample and some relevant applications of
the multi-level assembly model. Then in Section 7, the adaptation
and extensionmethod for the existing CAD systems is discussed for
practical top-down assembly design. Finally, conclusion and future
work are provided.

2. Related works

Traditional mechanical design is a top-down process which
starts with overall sketch and rough requirements to detailed and
refined components gradually. It iswell recognized that, in the long
history of evolvement in mechanical design, top-down product
design is always an important issue and the relevant computer-
based tools supporting top-down design are absolutely necessary.

Someworks analyze the characteristics of traditional top-down
product design and discover the interesting issues about it. Libardi
et al. [1] give an overview of the literature before 1988 about the
development of computer environments for mechanical assembly
design. In the review, support for top-down design and multiple
viewpoints is one of the key points. Wen Jian et al. [2] overview
the state of the art in the research of top-down product design and
point out some problems which need to be overcome in top-down
design systems, such as assembly model representation for top-
down product design and the reasoning method from conceptual
model to parametricmodel. The research conducted byMäntylä [3]
is a pioneer work which addresses the top-down product design
system seriously. In thework, the author points out that the design
process could be decomposed into functional design, conceptual
design and detail design, while a top-down product design system
should supportmultiple abstractionmodels for all the three design
phases. Many important concepts and issues about top-down
design approach in mechanical engineering are also discussed,
such as abstract geometry, focus change, geometry inheritance and
redesign problem.

The whole top-down product design consists of several design
phases dealing with different levels of design information. Many
relevant works are presented for specific design phases in the top-
down product design.

There are a number of methods and techniques for establishing
function structure in conceptual design. Sturges et al. [4] present
functional flow charts and functional logic diagrams for function
representation. Umeda et al. [5] propose the Function-Behavior-
State (FBS) model which associates the function symbols, behav-
iors and states together, the first one the subjective part and the
latter two the objective parts. Karnopp et al. [6] discuss the use
of bond graphs in modeling of electrical, mechanical and hydraulic
systems. Gui et al. [7] developed a set of behavioral specifications to
capture the inter-relationships among components. More details
and discussion about these techniques can be found in [8].

Layout design is a very important part in the embodiment
design phase which follows the conceptual design. There are also
someworks concentrating on the development of computer-based
tools for layout design. Lashin et al. [9] analyze six levels of
abstraction from the coarsest convex hull to the finest geometric
model and conclude that the abstraction level 2 model is suited
for design of large layouts, in which all the geometry necessary
to check function, spatial compatibility, etc., are described.

Csabai et al. [10,11] use design spaces and interface features in
their 3D Layout Module to determine the kinematic constraints
between functional components in layout design. Based on their
representation, kinematic analysis could be executed in an early
stage during the whole design process. Mantripragada et al. [12]
present the concept of DFC (datum flow chain) to capture the
fundamental structure of assembly. The logical layout design
could be carried out to establish directed chains of dimensional
datums to control how parts are located with respect to each
other. Besides the works mentioned, Clement et al. [13] present
a model called TTRS (technologically and topologically related
surfaces) to associate elementary surfaces. Along with TTRS, the
MGDE (minimum geometric datum elements) is used to define
the reference frames of various surfaces associations. Although
the TTRS and MGDE are mainly presented for dimensioning and
tolerancing, the idea of the ‘‘abstraction of real surfaces’’ behind
MGDE could be potentially used in layout design to help design
kinematic relationships.

In the last two decades, feature-based assembly modeling has
attracted many researchers’ attention. Shah et al. [14] describe the
assembly modeling as an extension of feature-based modeling for
parts. In the work an assembly feature is used to bind two com-
ponents together, which is substantially an association between
two form features on different parts. Constraints on mating fea-
tures’ shapes and relative positions are defined in assembly fea-
tures. Holland et al. [15,16] use ‘‘Related’’ and ‘‘Relation’’ as the
base classes for both part and assembly modeling. Assembly fea-
tures are used in both assembly modeling and assembly planning
(assembly sequence planning, assembly motion planning, fixture
planning, etc.), which include handling features for handling com-
ponents and connection features for connecting components to-
gether. Shyamsundar et al. [17] introduce the concept of virtual
space and present a geometric representation AREP for collabora-
tive assembly design. Assembly features in the work are classified
into relational assembly features indicating the relation between
geometric features, and assembly form features as the result of
joining certain shape features of two components together. Singh
et al. [18] present assembly ports to group together the interface
information between parts. Based on the port representation, anal-
ysis for label matching, dimension evaluation, mating constraint
solvability, etc. could be carried on to automate the mating def-
inition and reduce the designers’ effort. Kim et al. [19] describe
their ARM (assembly relationmodel) and develop an AsD ontology
based on ARM which captures the semantics of assembly/joining
concepts and relations. TheAsDontology is applied in collaborative
product development and shows its capability in maintaining the
design intent of assembly relations. However, the presented ontol-
ogy is not aimed at capturing the design knowledge and informa-
tion involved in the dynamic top-down assembly design process.

Besides the work that focuses on specific design phases, many
researchers have also explored integration methods of the dif-
ferent information representation involved in conceptual design
and downstream product development. Kusiak et al. [20] use di-
agraphs to help the transformation from conceptual design and
embodiment design. Brunetti et al. [21] present a feature-based
representation to establish the relationships among requirements,
functions, working principles and geometricmodels. Roy et al. [22]
give an object-oriented approach to help the product design pass-
ing through the complete product’s life cycle from functional
requirements to artifacts. Bronsvoort et al. [23] describe a
multiple-view feature modeling approach for integral product de-
signwhich includes conceptual design view, assembly design view,
part detail design view and part manufacturing planning view. The
consistencymaintenancemechanism is also discussed in thework.

Some commercial CAD systems like UG, Pro/E and CATIA
notice the significance of top-down product design and extend
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their systems to support it more or less. As a representative
one, Pro/E [24] develops some top-down design functions such
as 2D layout, 3D skeleton model, parameter declaration and
geometry feature publishing. These functions are built based on
the existing parametric modeling system and strengthen the
association between design knowledge to some extent. After
analyzing the differences between top-down product design
modules of commercial CAD systems, Aleixos et al. [25] propose
a hierarchical control framework above commercial CAD systems
and some design rules for integration of conceptual and detail
design. Mun et al. [26,27] present a neutral skeleton model to
exchange design information between collaborative OEM and
suppliers, through which the intellectual property of companies
could be protected and engineering changes during development
could be propagated. Lee et al. [28] present an interesting cellular-
based approach to generating progressive solid models which are
in various levels of detail. However, these models are generated
from detailed feature-based models and are mainly used for
visualization, analysis and collaboration.

Besides the works mentioned above, there are several re-
searches focusing on the representation of the whole product in
a single integrated model. Fenves et al. [29–32] present a well-
defined Core Product Model (CPM) which is a base-level model
not tied to any specific application or software, and is aimed at
capturing product information shared throughout thewhole prod-
uct’s lifecycle. The Open Assembly Model (OAM) [33,34] extended
from CPM provides an object-oriented definition of an assembly
model which incorporates representations for tolerance, kinemat-
ics, assembly relationships and assembly features. Manbub Mur-
shed et al. [35] present Open Assembly Model Plus (OAM+) to
support legacy systems engineering. The assembly feature is the
key part of OAM+, and screw representation is adopted to express
the relations between parts which can support kinematic analysis
and force analysis well.

In general, the research on top-down product design is still
preliminary. There are two problems with the works described
above. The first one is the absence of an assembly model dedicated
to top-down product design. Some works discover and establish
significant concepts about the top-down product design, while
others mainly focus on the representation of design information
in some specific design phases. Although the OAM and OAM+
are quite useful assembly models for representing conventional
assembly information, they are not designed to be dedicated to
the top-down product design. Commercial CAD systems develop
some functions for top-down design indeed, but the models and
methods used are generally different and strongly dependent on
their own conventions. The second problem is the insufficiency
of data transferring and association mechanisms for top-down
product design. The aim of the multi-level assembly model and
various inheritance mechanisms presented in this paper is to
solve these two problems, which account for the very obstacles of
implementing general computer-based tools supporting top-down
product design.

3. Top-down product design process

The product design process can be divided to five phases
according to Shah et al. [36] (the division in Pahl et al. [37] is only a
little different): functional design, conceptual design, embodiment
design, detail design and engineering analysis as shown in Fig. 1.

However, these design phases are, in general, not sequential.
Indeed, they are mostly iterative, recursive and mixed together,
with no clear borderlines between different phases. Based on
this observation, we refine a top-down assembly design process
which involves the evolution of assembly structure (tree-based
hierarchical model [38]) during product design as shown in Fig. 2.

Fig. 1. Traditional product design process.

The refined top-down assembly design process is more simple
and compact at fine granularity and hence more suitable for the
computerization of top-down product design.

In the top-down assembly design process, an elemental sub-
process top-down component design (denoted by TDCD below)
is executed on each component along with the expansion of the
assembly tree. When top-down assembly design starts, the TDCD
is executed at the product root and the product is decomposed
into several sub-components. Then loose-coupled and parallel
execution of TDCD is carried out on each of the sub-components
after handling most of the coupled data among them. The last
step repeats recursively when some sub-components still have
sub-sub-components. Finally the product design finishes when
TDCD has been successfully executed on every part (leaves in the
assembly tree) of the product.

Fig. 3 gives the detailed flow chart of TDCD on an arbitrary
component. The key points of TDCD are explained below.
Precondition: The execution of TDCD on a component requires
the predefinition of overall function and shape skeleton of the
component. In other words, overall function and shape skeleton
are the prerequisite of TDCD. For the product root, the overall
function and shape skeleton are defined based on the requirements
of the product; for components other than the product’s root, the
required information is generated during the TDCD of its parent
assembly. Here shape skeleton is a vague and incomplete shape
of a component, which is similar to the concept ‘‘design space’’ or
‘‘base shape’’ mentioned in other works [10,15,20]. It is often used
like an envelopewhich constrains the spatial dimension and rough
shape of a component.
Content: The inner behavior of TDCD is quite different according to
the type of the component.
TDCD on assembly: When the component under TDCD is an
assembly, abstract design and skeleton design are executed first,
and then TDCD of subcomponents are launched recursively. These
three steps are further described below:



4 X. Chen et al. / Computer-Aided Design ( ) –

Fig. 2. Top-down assembly design along with evolution of assembly structure.

(a) The abstract design deals with abstract information such as
functions, ideas and concepts which are the main responsibil-
ities of functional design and conceptual design in traditional
design process. The overall function is decomposed to establish
a function structure and an engineering structure with specific
physical behavior is found to deliver the desired functions. The
result of abstract design is actually a ‘‘concept’’ (or principle so-
lution) of the product at a specific abstract level.

(b) Based on the result of abstract design, skeleton design is
carried out which mainly considers information about shape
and spatial arrangement. Assembly is first decomposed into
several sub-components and mapped to the design concept
as a realization structure. Then the shape skeletons of these
sub-components are generated within the shape skeleton
of the assembly. After that, skeleton interfaces are defined
between sub-components and link the corresponding shape
skeletons together. Here the skeleton interface is an abstract
form of assembly interface which describes the mating rules
and relativemotions between twoormore components. Finally
the spatial arrangement (relative positions of shape skeletons)
is determined by specific kinematic constraints embedded
in the skeleton interfaces. The result of skeleton design is a
‘‘3d-layout’’ which describes the spatial configuration of the
assembly elements and kinematic behaviors between them.

(c) When abstract design and skeleton design finish, the TDCD
should be executed on each sub-component of the assembly
recursively. However, the precondition of TDCD described
before needs to be prepared for the successful execution of
TDCD. Fortunately, it can be seen from (a) & (b) that the
functions and shape skeletons of sub-components have already
been generated in abstract design and skeleton design, hence

the TDCD is able to be carried out on each sub-component of
the assembly recursively. In other words, the invariant needed
for recursion is perfectly maintained during TDCD.

TDCD on part: On the other hand, when a component under TDCD
is a part, the shape skeleton of the part is refined to the detailed
shapewhile various design aspects such asmanufacturing cost and
ergonomics are considered.

It can be seen that, although it is a bit ideal as to practical
situations, the top-down assembly design process can describe the
product designwithout vague borderlines and overlapping phases.
As a result, computational models and relevant algorithms which
need exact data-flow information during product design can be
brought in based on the top-down assembly design process.

Based on the top-down assembly design process, we list below
the requirements on computer-based tools supporting top-down
assembly design:

1. An integrated multi-level assembly model is needed for cap-
turing information in different levels of abstraction during top-
down assembly design. It should represent not only the detailed
geometric information but also the more abstract information
such as function and layout. CAD system independent property
should be kept on the integratedmulti-levelmodel so that com-
mercial CAD models can be extended and adapted to it.

2. Various inheritance mechanisms should be provided to ensure
the transition and association of design information between
different design phases.

3. Effective approaches for combinations of top-down design and
bottom-up design should be explored to sufficiently reuse the
abundant existing models.
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Fig. 3. Flow chart of TDCD on an arbitrary component.

4. Multi-level assembly model for top-down assembly design

Inspired by CPM [32] and OAM [34], we extend and revise the
previous work [39,40] in order to support top-down assembly
design better. A new multi-level assembly model is put forward
here to capture multiple levels of design information, which
includes the information for abstract design, skeleton design and
detail design in top-down assembly design process. The abstract
design mainly processes abstract information such as function
and behavior, while the skeleton design processes information
about the spatial arrangement of components (a.k.a. layout). Those
design information is all represented in the multi-level assembly
model. Meanwhile, the information for detail design such as
geometry and material is also covered certainly. The whole class
diagram of themulti-level assemblymodel is shown in Fig. 4. More
details of the model are described below:
Main assembly structure

TDComponent is the abstract base class that represents a
component which could be either a part or a sub-assembly in the
product, and the prefix TD means top-down here. TDComponent
contains the common data of an arbitrary component in a product
regardless of the component type, i.e. the data shared by part and
sub-assembly. TDPart and TDAssembly derived from TDComponent
are the main concrete classes for controlling the product’s
structure and managing product data in the whole design process.
TDPart represents an elementary part used in the product, which

is a leaf in the assembly tree. Meanwhile, TDAssembly represents
a sub-assembly (including the assembly root of the product),
which is a non-leaf node and contains some child nodes under
it as the components of the assembly. AssemblyInterface is used
to represent the assembly interfaces between components of an
assembly, in which kinematic relationships, connection forms and
corresponding geometric-mating relationships are all managed. In
addition, CoupledRelationManager maintains the coupled relations
among components, such as algebraic equations for constraining
relevant design parameters.
Abstract information

Function and Behavior represent information processed in ab-
stract design. They are the common data stored in class TDCom-
ponent, which contain functional and behavioral information of a
component respectively.

Function describes ‘‘what to do’’, i.e. the intended behavior
of a component, and a reasonable function-taxonomy (e.g. [41])
could be adopted to help the description. In addition, specific
function parameters and constraints are stored to give quantitative
information about a component. Feature could also have functions
because of the fine-granularity relationships between functional
and geometric information.

Compared with function, behavior is a more objective concept
which describes the way a component achieves its function,
hence various behaviors could realize the same function, and
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Fig. 4. The multi-level assembly model for top-down design.

the association between them is not one-to-one. On the other
hand, behaviors of components can be seen as sequential state
transitions along time which is determined by some specific
physical phenomena and principles.

Currently, the support for abstract design is still preliminary in
our model. Details about function and behavior information used
in abstract design are not further explored here. Meanwhile, the
connection between the abstract information and other informa-
tion in themulti-level assemblymodel needs to be complemented.

Skeleton information
ShapeSkeleton represents the rough shape of a component

which somewhat likes an envelope (see Fig. 5). It is the carrier
and presenter of significant geometries and parameters derived
from earlier design. ShapeSkeleton is stored in TDComponent so

Fig. 5. The shape skeleton (left) and the final shape (right) of a piston model.

that each component in a product can have one. Here we formally
define a shape skeleton as:

A preliminary but sufficient 3D geometric model with significant
form knowledge and parameters embedded in, and the base of the
following design as both the space restriction and form restriction.
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Fig. 6. A layout skeleton with three shape skeletons and two prismatic pairs.

LayoutSkeleton represents the fundamental layout of an assem-
bly. Generally, the layout of an assembly consists of a number of
functional components linked together through kinematic rela-
tionships. Here we define a layout skeleton as:

A skeleton-level assembly consisting of the child components’
shape skeletons, which are arranged in three-dimensional space
and connected together through the assembly interfaces defined
between them.

Fig. 6 shows an example of layout skeleton. As the layout
skeleton contains the three-dimensional layout information of an
assembly, preliminary kinematic analysis can be carried out in an
early design phase; hence the flaws of existing design could be
revealed and recovered in time, and later designs based on the
layout skeleton could be executed more robustly.

The design of skeleton related information adheres to the
least commitment principle. Designers do not need to consider
unrelated or unimportant information of the product in design.
Detailed information

Feature is a generalized abstract class for all types of features.
Each feature contains a Form representation which includes ge-
ometric information and material information in Geometry and
Material respectively. Besides that, form also possesses a set of
constraints abstracted by class Constraint. There are various con-
crete constraints such as ParametricConstraint and Geometric-
Constraint derived from Constraint. An extension of the constraint
category could easily be integrated into the assembly model.
Multi-level assembly interface information

AssemblyInterface stores multi-level information of an assem-
bly interface which connects two or more components together.
The information in an assembly interface includes the connection
type, the connection forms and the various relevant constraints.

The SkeletonInterface and ConcreteInterface represent the two
implementation levels of an assembly interface. SkeletonInterface
stores information about the kinematic aspect of an assembly
interface, while ConcreteInterface stores information about the
physical form of an assembly interface.

The SkeletonFeature and ConcreteFeature are all derived classes
of abstract class Feature. A concrete feature is just the form feature
used in traditional feature-based design. On the other hand, the
skeleton feature contains a group of abstract geometric elements
used as anchor for defining kinematic constraints (the idea comes
from the interface feature in [10], and the MGDE concept in [13]
shows similar thoughts behind its abstraction mechanism). The
skeleton feature is positioned parametrically in the shape skeleton
and can be seen as the abstraction of the concrete feature dedicated
for connection. An illustration example of the skeleton feature and
concrete feature in an assembly interface is shown in Fig. 7.

Normally, a skeleton interface contains kinematic constraints
between two or more skeleton features, while a concrete interface
contains form constraints and mating constraints between two or
more concrete features. Furthermore, the skeleton features should
have inner consistencies with the corresponding concrete features
in an assembly interface, while the involved kinematic constraints,
form constraints and mating constraints should be also consistent.

Fig. 7. The skeleton feature (left) and corresponding slot feature (right) involved
in an assembly interface with prismatic pair.

It should be pointed out that sometimes ConcreteInterface
could have extra component which has no main functions but
aims at the implementation of the assembly interface (like a
bearing between shaft and housing). This specific relationship is
also maintained in the model.
Inheritance information

Due to the existence of multiple levels of knowledge and
information in the product model, it is required that the informa-
tion transition and association are correctly established and main-
tained. InheritanceManager is such a manager that exists in each
component to manage different kinds of information inheritance
instances. The abstract class Inheritance is the super class of vari-
ous concrete inheritance types which have specific purposes such
as function inheritance and geometry inheritance. The relevant in-
heritance mechanisms are described in next section.
Component instancing

During the top-down assembly design, designers may fre-
quently want to instance new components from existing ones and
locate them in different positions in the assembly. Due to different
design requirements, there could be various instancing strategies,
and designers should be able to select the one suitable for them.
The followingmechanisms are provided alongwith themulti-level
assembly model for instancing new components:

(a) Each component has a transform field which is essentially a
matrix. Every time a component is instanced, a new transform
is created to represent its unique position in the assembly.

(b) When designers want to instance a new component identical
to an existing one throughout the design process, the shallow
copy mode is activated. In this mode, the same contents of the
original component are referenced by the newly created one
concurrently. Fig. 8(a) shows how a top-down part is instanced
under the shallowcopymode. All the references to the contents
of the original part such as function and form are copied to the
new one. Therefore, any time one of the two parts is changed,
the other part is also changed accordingly since they share the
same copy of contents. The shallow copy mode is suitable for
the symmetrical components in the assembly.

(c) When designers want to instance a new component from an
existing one and make them independent after the instancing,
the deep copy mode is activated. In this mode, the same
contents of the original component are copied first and the
newcomponent references the copied contents. Fig. 8(b) shows
how a top-down part is instanced under the shallow copy
mode. All the contents of the original part such as function
and form are copied, and then the new part references the
new copies of the contents. Therefore, the two parts could
be changed independently since they do not share the same
copy of contents. The deep copy mode is often used for the
components with the same configuration, e.g. the feature
structures, located in different assembly levels.
In all, the multi-level assembly model integrates information of

different design stages together in a single extensible framework.
Currently, the model puts emphasis upon the information
required by the embodiment design and detail design phases of



8 X. Chen et al. / Computer-Aided Design ( ) –

Fig. 8. The two different part-instancing strategies.

traditional top-downproduct designprocess. Information involved
in these design activities such as skeleton information and
detailed shape information is represented suitably. Meanwhile,
the connections between the information like assembly interface,
various constraints and inheritances are contained. However, to
include the information involved in the abstract design better, the
representation of function, behavior and the relevant connections
(besides the constraints of physical laws) to other information in
the multi-level assembly model should be explored further.

5. Inheritance mechanisms

In the top-down assembly design, designers need to switch
among abstract design, skeleton design and detail design contin-
uously until the detailed model of all parts in the whole prod-
uct are generated. During this process, there are multiple levels of
model representations involved as described before, and the de-
sign knowledge and information need to be transferred fluently
and accurately between the variousmodel representations. As a re-
sult, how to support the information flow in computer-based tool
supporting top-down assembly design is a serious problem.
Inheritance definition

To transfer between various design phases during the top-
down assembly design smoothly, the existing high-level design
information should be utilized as both the design base and the
design constraints in low-level designs. Considering that, we need
here a new concept:

Inheritance, which normally means the process of transmission of
characteristics from parents to offspring, is used here to refer to the
process of transferring design information from high-level design
to low-level design and establishing associations between them.

We believe that an intelligent tool for design information
inheritance during top-down assembly design is significant for
designers. Using this tool, designers should be able to choose
the data they are interested in or need, and the choice on the
way of how these data are used should also be provided. Then
the tool transfers the design information and establishes suitable
associations automatically for designers. As a result, designers
could use the existing design information without recreating them
from scratch.Meanwhile, the inherited information could also play
the role of design constraints for following design. This eases the
burden of designers without loss of semantic accuracy of existing
design information.
Inheritance classification

Due to the diversity of design information involved in top-down
assembly design, various design information inheritances could
happen. We list here four different inheritances according to the
objects and data processed:
Function inheritance: Functional information in high-level design
should be able to be inherited to constrain the low-level design
information. For example, volume of a part could be decided by
function parameters defined in abstract design, and the length,

width and height of the part could be further constrained through
the volume.
Geometry inheritance: Geometric information in the shape skeleton
of a component should be able to be used to decide the positions
or dimensions of geometric information in a detailed model of the
component or shape skeletons of the sub-components.
Feature inheritance: Feature information is at a higher level than ge-
ometric information. Therefore, the feature information in a shape
skeleton should be able to be inherited in whole to determine
the preliminary shapes of detailedmodels or child shape skeletons.
Interface inheritance: The assembly interface is multi-level itself.
Therefore, the skeleton interface should be able to be inherited to
generate the corresponding concrete interface. Moreover, skeleton
features and concrete features for assembly interfaces should be
inherited either from shape skeleton to detailed model or from
shape skeleton to suitable child shape skeletons.

The inheritances listed above are representative ones in top-
down assembly design, and the relevant mechanisms for their
implementation are described below.
Inheritance mechanisms

To support the various information inheritances in top-down
assembly design, a set of robust inheritance mechanisms with di-
versity of intention should be explored. Intrinsically, inheritance
could be regarded as the composition of specific ‘‘copy’’ and ‘‘as-
sociation’’ operations (Fig. 9), in which ‘‘copy’’ means making a
duplicate object from the original one and ‘‘association’’ means
linking the duplicated object and the original one for further
change propagation. Below we explain the details of the inheri-
tance mechanisms for the multiple information inheritances de-
scribed above.
(a) Function inheritance

Usually the quantitative data in function related information
are some function parameters constrained by some algebraic
equations, and designers choose several parameters to be inherited
to restrict the following design activities. The inheritance of
algebraic parameters is straightforward in which the copies of
parameters are created with their values and corresponding
association equations are established.

Of course, designers could constrain the design parameters in
low level to parameters in high level directly without inheritance,
but in this way the low level model is tightly-coupled to the high
level model. In other words, when the high level model is absent,
the low level model becomes invalid as the needed parameters
cannot be found. This confuses and disturbs designers when they
want to use the low level model alone (situation like this happens
quite often). On the other hand, with the help of parameters
inheritance, the low levelmodel is loosely-coupled to the high level
model because there are extra copies of parameters in the low level
model which ensure the integrality (Fig. 10).

In order to thoroughly support the abstract design, more
powerful function inheritance mechanism is needed which could
transmit non-quantitative functional knowledge from a high-level
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Fig. 9. The intension of inheritance.

Fig. 10. The comparison of evaluation without inheritance and with inheritance.

design to a low-level design. However, as the abstract information
is not fully represented in the current multi-level assembly model,
the relevant inheritance mechanism cannot be explored here and
will be developed in the future.
(b) Geometry inheritance

The geometric elements in the shape skeleton are always
needed to be referred to in defining the shapes of sub-skeletons or
detailed models, while geometry inheritance mechanism works in
this situation. Again, two operations ‘‘copy’’ and ‘‘association’’ are
executed in sequence to inherit a geometric element.

The geometric elements to be inherited are often the ones
which could be used as a datum for reference. Hence datum point,
datum axis, datum plane, vertex, edge and plane are candidates
for geometric inheritance. Moreover, the inherited geometric
elements are all converted to datum elements, e.g. the inheritance
of an edge is a datum axis. The reason is that designers would not
use a single geometric element to construct the body of the shape.
In other words, they just use it to position the main body of the
shape. The copy of geometric elements uses the internal geometric
data of source element to generate the target element (Fig. 11).

After a copy operation of a geometric element, an association
relation (GEsrc, GEtar) between source and target geometric ele-
ment is established. Such relations are maintained in the inheri-
tance manager of components (see Fig. 4). Shape modification is
supervised so that inheritances will be checked when any shape
modification happens, and the affected inheritance will notify the
target model to regenerate the inherited element according to the
new source element (Fig. 12).

The geometric element inheritance mechanism makes the
source model and the target model loosely coupled again, as the
target model could still be valid when the association between
source model and target model is cut off.
(c) Feature inheritance

As shape feature is used so often in design nowadays, feature
inheritance mechanism must be provided with diversity of use.

Fig. 11. The inheritance of geometric elements.

Fig. 12. The effect of inheritance under shape modification.

For a feature inheritance, we define three modes with different
meanings and intentions.
Non-parametric mode: Only the shape of the source feature is
copied to the target model (Fig. 13). Mostly, a designer inherits
a feature purely for its shape information, and the parameters in
the feature are not important to him. Actually, designer of the
source feature may not want the parameters in it to be modified
in following design. Therefore, the body of the source feature is
copied to the target model without any parameters, and designer
of the target model can refer to the geometric elements in the
shape for the following design. Association between the body of
source feature and the body of the target feature is established for
consistency maintenance. Once the body of the source feature is



10 X. Chen et al. / Computer-Aided Design ( ) –

Fig. 13. Non-parametric feature inheritance.

Fig. 14. Partially-parametric feature inheritance.

Fig. 15. Fully-parametric feature inheritance.

Fig. 16. The finding of the features to be inherited based on FDAG.

modified, the inheritance will regenerate the body of the target
feature.
Partially-parametric mode: Not only the shape but also the
parametric information of the source feature is copied to the target
model (Fig. 14). When designers want to control the shape of the
target feature in the absence of the source model, this mode is
useful. The parametric information of a feature includes feature
type, parameters and geometric references. Copying of the feature
type and parameters is straightforward, while copying of the
geometric references is achieved through geometry inheritance
described above. Associations between the feature-parameters are
established through algebraic equations, while the associations
between the geometric references are established the same as the
association in geometry inheritance.
Fully-parametric mode: The difference between the partially-
parametric mode and the fully-parametric mode is whether the
geometric references of a feature are also copied parametrically
along with the feature itself. The geometric elements used as
references in defining a feature F are generated by some existing
features before F (in the design history); hence the modification
of parameters in the existing features may change the shape or
position of F . In other words, feature F depends on some features
before it in the design history. If designerswant to getmore control
on an inherited feature, not only the inherited feature but also the
features on which the inherited one depends should be copied to
the target model parametrically (Fig. 15). The feature dependency
is often a long link since the features on which a feature depends
may still depend on other features, and FDAG (feature dependency

directed acyclic graph [42]) is a quite suitable representation to
express it. Therefore, when a feature is selected to be inherited in
the fully-parametric mode, the dependency link of the feature is
extracted from the FDAG,which decides all the features that should
also be inherited parametrically (Fig. 16).
(d) Interface inheritance

Since assembly interface has different levels of representations,
multiple inheritance mechanisms should be provided for them.
Once an assembly interface is defined in an assembly, skeleton
features or concrete features are created on relevant components
of the assembly interface. After that, if one of such components
is a sub-assembly and further subdivided to sub-components,
the skeleton features or concrete features on the sub-assembly
should be inherited to sub-components as the existing design
knowledge and constraints. Moreover, all components have their
shape skeletons. Since the skeleton features or concrete features
for assembly interface are always created on shape skeletons first,
the features should also be inherited to the detailed model from
the shape skeletons.
Skeleton feature inheritance: As described before, the skeleton
feature is composed of a group of abstract geometric elements
used as an anchor for defining kinematic constraints. Therefore,
the inheritance of skeleton features is actually the inheritance of
these geometric elements (Fig. 17), while the geometry inheritance
mechanisms described above could help.
Concrete feature inheritance: A concrete feature for assembly
interface is the physical form in a component model for
connection with other components. Hence the feature inheritance
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Fig. 17. The inheritance of skeleton feature.

Fig. 18. The inheritance of concrete feature.

mechanisms described above is the natural way to inherit the
concrete feature for assembly interface (Fig. 18).
Skeleton feature to concrete feature inheritance: In an assembly
interface, the skeleton feature is not exactly the same as the
concrete feature but the abstract form of it, hence the inheritance
describedhere is actually an implicit inheritance. Concrete features
should be generated according to the already designed skeleton
features. We define a common skeleton feature which consists
of a plane, a point, a normal axis and an extra orientation axis
in the plane. The predefined skeleton feature could be used
as the geometric anchor for definition of six lower-kinematic
pairs, i.e. prismatic pair, revolute pair, cylindrical pair, screw pair,
planar pair and spherical pair. Different geometric elements in the
common skeleton are activated for different types of kinematic-
pair definitions,while the inactivated elements are usually used for
determining positions (Fig. 19). The definition of higher kinematic-
pairs is much more difficult and has unlimited types theoretically,
hence it will not be discussed here.

In fact, inheritance from skeleton feature to concrete feature
depends on the type of concrete interface defined to implement
the corresponding skeleton interface. The same skeleton interface
could have several different types of concrete interface, due to the
fact that the same kinematic relation could have different physical
forms to implement it (e.g. the two different forms in Fig. 20 for
prismatic pair). In order to inherit skeleton feature to concrete
feature, the internal knowledge of different skeleton features and
concrete features could be used to establish different rules for
generating concrete features based on specific skeleton features.
For example, Fig. 21 shows the generation of concrete features in
a pin–hole interface, in which the positions and orientations of
pin and hole are determined by the skeleton features, while the
common parameters (diameter and length here) are defined in the
concrete interface for ensuring consistency between pin and hole.

Fig. 20. Two different implementations of prismatic pair.

6. Top-down assembly design sample

Here a top-down assembly design sample is used to illustrate
the usefulness of the multi-level assembly model and the inheri-
tance mechanisms. In this sample an engine for an automobile is
designed from the overall function and shape skeleton to the most
detailed geometry. There are six components in the engine assem-
bly,which includes one shell part, two rod sub-assemblies, twopis-
ton parts and one crankshaft. Moreover, the rod sub-assembly is
composed of the rod body and the end cap.

Fig. 22 shows a brief evolution process for the engine design,
which does not give the function related information for clarity.
It can be seen that in the design process, engine evolves from
the shape skeleton to the layout skeleton which consists of shape
skeletons of components in the engine, and then the components
of the engine continue the evolution from their shape skeletons.
In the components, the shell, piston and crankshaft are all parts
and the detailed models are generated from their shape skeletons.
On the other hand, the rod is a sub-assembly hence the layout
skeleton of the rod is generated from the shape skeleton of rod.
After that, recursive design is carried out on the rod body and
end cap respectively. Finally, the design finishes when detailed
models of the rod body and end cap are generated from their shape
skeletons. The detailed model of an assembly is easy to get by
assembling the detailed models of components in the assembly.

The assembly structure and relevant model information is
shown in Fig. 23. It can be seen that each component has its
own shape skeleton. Besides that, each assembly has an extra
layout skeleton controlling the spatial arrangement the subcompo-
nents’ shape skeletons and the assembly interfaces between them.
Skeleton interfaces between shape skeletons in the layout skele-
tons of engine model are shown in Fig. 24, in which the concrete
features for connection are already added on to the shape skeletons
based on the skeleton features.

The inheritance mechanisms are used throughout the engine
design (Fig. 25). The shape skeleton of the crankshaft uses two faces
in the overall shape skeleton to define the start and end of the shaft,
hence two reference planes inherited from the two selected faces

Fig. 19. Skeleton feature for lower-kinematic pairs (activated elements are shown in red). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 21. Generation of concrete features in a pin–hole interface.

Fig. 22. Top-down assembly design process of engine.

Fig. 23. The multi-level assembly model of engine.
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Fig. 24. Skeleton interfaces in the layout skeletons of engine model.

Fig. 25. Some inheritances in engine design.

are generated in the crankshaft model (geometry inheritance). The
design of the piston inherits the features of shape skeleton and
adds new features to generate the detailed model of the piston
(feature inheritance). During the design of the rod, there are two
skeleton features defined on the shape skeleton of it. One is for
the revolute-pair between rod and piston, and the other is for the
revolute-pair between rod and crankshaft. Then at a suitable time
designers can inherit these two skeleton features to generate the
concrete holes on the shape skeleton (interface inheritance).

When the top-down assembly design of engine finishes, the
layout skeleton can be used as the main controller for the
engine assembly, i.e. the parameters defined in it can be modified
according to specific needs. The multi-level assembly model and
the inheritance mechanisms used in the engine design ensure that
the engine model changes correctly when the layout skeleton is
modified (Fig. 26).

Moreover, the multi-level assembly model has another benefit
that deserves attention. The multi-resolution representation of
an assembly could be easily generated based on the multi-level
assembly model. As each component in the assembly has its
own shape skeleton, the multi-resolution assembly model can
be generated through the combination of shape skeletons and
detailed models (Fig. 27).

7. Discussion

In order to make next generation computer-based tools
supporting top-down assembly designmore useful and receivable,
some practical problems need to be considered. One of them is the
adaptation and extension for existing CAD systems. Since current
CAD systems have good support for detailed geometric modeling,
how to adapt and extend the abilities of the existing CAD systems
to build the top-down assembly design tool, rather than to create
brand new systems, is quite meaningful.

In the work, the presented multi-level assembly model is
essentially a neutral high-level framework built on top of some
common infrastructures of today’s mainstream CAD systems such
as solid models, features and constraints. It has no specific
requirements on these infrastructures although there are different
implementations of them. Therefore the presented multi-level
assembly model can be seen as independent of any CAD systems
which support feature-based modeling well, and native models
of these existing CAD systems could be adapted and extended to
construct a top-down assembly design environment based on the
presented model.

Fig. 28 displays the adaptation and extension for native models
of existing CAD systems. In the picture, the main classes in the
multi-level assembly model are shown and classified into two
categories, one is the part that is not hard to be adapted and the
other is the part that needs extension.

The classes which could be generally adapted from native
model of CAD systems are: TDComponent, Form, ShapeSkeleton,
ConcreteFeature and Constraint. TDComponent could be adapted
from a native assembly as a host assembly, which aggregates the
shape skeleton and other more detailed models. Form could be
supported well by the traditional B-rep model and the material
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Fig. 26. The change propagation on modification of parameters in the layout skeleton.

Fig. 27. Some multi-resolution models of engine.

Fig. 28. The adaptation and extension for native models of existing CAD systems.

information of an existing CAD system. ShapeSkeleton is intrin-
sically a simplified shape model, hence could be adapted from
NativePart easily. ConcreteFeature is the same as traditional form
feature which is used in most existing CAD systems. Constraint is
an abstract class for concrete constraints such as parametric con-
straint and geometric constraint which could be supported well in
existing CAD systems. However, there are still some complex con-
straints such as a non-linear equation system which cannot be
supported in some CAD systems. Therefore the adaptation for con-
straint is still partial.

On the other hand, the classes which have no direct corre-
spondences in existing CAD systems are: AssemblyInterface, Skele-
tonInterface, ConcreteInterface, LayoutSkeleton, SkeletonFeature,
Inheritance, InheritanceManager, CoupledRelationManager, Func-
tion and Behavior. The limited support to the listed information
is obviously an obstacle. Existing CAD systems need extensions
for the unsupported information to construct effective top-down
assembly design modules. Once the extensions succeed, even the

computer-based environment for collaborative top-down assem-
bly design between heterogeneous CAD systems is likely to be
created, which could provide more powerful support to complex
product design.

8. Conclusion and future works

In this paper, a multi-level assembly model for top-down
assembly design is presented. Differing from existing assembly
models, it captures abstract information, skeleton information and
detailed information that belongs to different design phases, and
thus can effectively support top-down assembly design. As the
base for constructing the multi-level assembly model, the tra-
ditional product design process is a bit too coarse and has no
clear borderlines between design phases. Therefore, a top-down
assembly design process is refined from the traditional product
design process. The top-down assembly design process consists
of many fine-granularity TDCD (‘‘top-down component design’’)
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Fig. 29. The framework for integration of top-down design and bottom-up design.

design steps which are executed recursively along with the ex-
pansion of an assembly tree structure. In our opinion, the top-
down assembly design process could depict the product design
process more simply and compactly at the fine-granularity level
which eases the computerization of top-down assembly design.
Furthermore, various inheritancemechanisms for transferring and
converting information pertaining to different design phases are
also classified and described respectively. Function inheritance, ge-
ometry inheritance, feature inheritance and interface inheritance
are the main items of the classification, each with its own spe-
cialties. These inheritance mechanisms could help to propagate
design knowledge for designers and ensure design consistencies
between different design phases. Practical uses of top-down as-
sembly design are discussed for extending the scope and deepness
of its application. The adaptation and extension for native mod-
els of existing systems is helpful for the rapid development of top-
down assembly design modules on mature CAD systems.

In the future, the multi-level assembly model with inheritance
mechanismswill be implemented based on an existing CAD system
to check its validity in real complex design tasks. Besides that, great
efforts are needed to address the following issues, which could
bring vast benefits to next generation CAD systems supporting top-
down assembly design:
Complementing the abstract information: The abstract information
in current top-down assembly models is still preliminary and
does not contain all the information involved in functional design
or conceptual design. Therefore, the multi-level assembly model
needs further expansion in order to effectively support the above
two design phases, e.g. incorporating the Function-Behavior-State
(FBS) model. Furthermore, the connections and smooth transitions
between the abstract information and other information in the
top-down assembly model are required. Meanwhile, the relevant
inheritance mechanisms for abstract information should also be
explored.
Incorporating other design paradigms: Since today’s design is
dynamic and incremental, product requirements always change
during the design process, as well as the product solutions which
fulfill the product’s requirements. Several works have addressed
these problems in various aspects, such as the works by Zeng et al.
[43,44] which give the set-theory basedmathematical formulation

of design process and describe the design specification, product
description and product performances involved in the dynamic
design processes, the work by Otto et al. [45] which discusses
the reverse engineering and redesign problem and the work by
Zeng et al. [46] which establishes the mathematical foundation
of the freehand design sketches evolving in conceptual design.
The multi-level assembly model presented in this paper should
be enhanced with more assistant design-variation mechanisms to
support the incremental character of design process. For example,
the mechanisms for adjusting a product’s structure are needed,
which could combine several parts to a sub-assembly or split
a sub-assembly into several parts during the top-down design
process, while the relevant skeletons, constraints and inheritances
are reasonably maintained. Besides the incremental design, our
model should also consider and incorporate the characteristics
of some other design paradigms, such as design in context and
mechatronical design.
Combining the top-down and bottom-up design: Although top-
down design and bottom-up design are two distinct ways for
constructing products, in many real-world designs of complex
products, they are used together. Therefore, the methods for
smooth integration of the two design approaches are needed to
take full advantages of both. A demonstrative framework for the
integration of top-down design and bottom-up design is shown
in Fig. 29. The main ideas behind are skeleton-based assembly
retrieval and linking: (a) during the design process, the skeleton
which controls the product layout and component shapes is a
quite suitable query for searching assemblies. The skeleton model
consists of key components with important design parameters
and the relations between them. In fact, the skeleton model is
the well-defined common result at some milestones in the whole
design process and plays the role of leading the following design
activities; (b) after assembly retrieval, the returned models need
to be filtered and adjusted in order to satisfy design constraints
and specifications the designers require. Therefore, methods and
tools for establishing the link between the query skeleton and
the retrieved assembly should be provided, which make the high
level control of the assembly through the skeleton possible. Based
on assembly retrieval and skeleton linking, innovative design and
model reuse could be seamlessly integrated, which is actually a
way for achieving the integration of top-down design and bottom-
up design.
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