
Computer-Aided Design 44 (2012) 554–574
Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

A flexible assembly retrieval approach for model reuse
Xiang Chen a, Shuming Gao a,∗, Song Guo a, Jing Bai a,b
a State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou, PR China
b Dept. of Computer Science and Engineering, Beifang University of Nationalities, Yinchuan, PR China

a r t i c l e i n f o

Article history:
Received 12 June 2011
Accepted 8 February 2012

Keywords:
Flexible assembly retrieval
Multilevel assembly descriptor
Partial retrieval
Assembling semantics
Assembly model matching
Assembly indexing mechanism
Design reuse

a b s t r a c t

Nowadays, growing quantities of product models are created in industries. Usually, these models contain
abundant design knowledge, either explicit or implicit, in various disciplines. As an approach to taking
full advantage of the design knowledge embedded, model reuse plays an increasingly important part in
complex product design and innovative design, in which enormous time and cost can be saved. While
model retrieval is a natural and promising way to help designers find the right models for quick and
accurate reuse, the retrieval technology for assemblies is yet to reach maturity since the previous text-
based or low-level content-based assembly retrieval could not fully support the needs of users.

In this paper, a new assembly retrieval approach is presented, based onwhich, users can input flexible
queries, either rough or precise, to retrieve efficiently the whole or partial assemblies they want from
the product library. First, a multilevel assembly descriptor supporting various searching requirements
is elaborated, which collects different levels of information in assembly models. Then, the corresponding
matching and similarity assessmentmethodswithwell-balanced efficiency and discriminability are given
to evaluate the differences between assemblymodels. Moreover, an indexingmechanism for accelerating
assembly retrieval, especially the partial retrieval, is presented to filter the unmatchable models quickly.
Finally, an assembly retrieval prototype system is implemented, and the experimental results are analyzed
to verify the advantages of the flexible assembly retrieval approach.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the information age today, the amount and value of
information is increasing rapidly due to the widespread use of
information technology. Specifically, as the computer-aided design
(CAD) systems enjoy ever greater popularity in modern industries,
a vast number of 3D digital models are generated and stored in the
internet or enterprise repositories. These models always contain
plenty of embedded knowledge worthy of utilization. Therefore,
it will be a huge waste if the models, together with the embedded
knowledge, could not be discovered and exploited to help practical
works. Model retrieval technology, capable of searching out the
models similar or relevant to a user input query fromahuge library,
is apparently conductive to the reuse of the abundant models and
knowledge available worldwide.

In fact, model retrieval can be a dominant technology bringing
about remarkable changes in the world. Various daily works
can benefit from the model retrieval technology, such as design,
study, exhibition and consultation. For example, designers always
need to find models reusable for their design tasks at hand.

∗ Corresponding author. Tel.: +86 571 88206681x514.
E-mail addresses: xchen@cad.zju.edu.cn (X. Chen), smgao@cad.zju.edu.cn

(S. Gao), guosong@cad.zju.edu.cn (S. Guo), baijing@cad.zju.edu.cn,
baijing.nun@gmail.com (J. Bai).

0010-4485/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2012.02.001
The functional decomposition, geometrical implementation or
even manufacturing cost estimation of a new design can all be
accelerated by studying or reusing the design intents from similar
models. Sometimes, when designers have just a rough idea in their
minds, they can even provide a rough query model and use model
retrieval to find some relevant models to inspire their designs.
Since design is crucial to the success of a product in the market,
modern industries can achieve huge gains with the increase of
design efficiency granted by model retrieval. As Llewelyn [1] point
out, the design work takes up only about 15%–20% of the total
cost, but the quality of the design can decide 70%–80% of the total
cost. Meanwhile, in statistics, model and knowledge reuse takes
a considerable part in design activities. According to Gunn [2],
only 20% of parts require completely new designs, while 40% of
them are obtained by direct reuse and the other 40% through a
modification of the existing designs. Therefore, it is urgent for
modern enterprises and companies to possess model retrieval
technologies which fulfill designers’ various requirements. Well
developed and utilized model retrieval systems can enormously
help enterprises and companies shorten the product lifecycles,
which ultimately determines their successes in the global market.

Given that manual browsing is tedious and error-prone, there
have emerged several kinds of tools for search so far, e.g. text-based
search. However, as mentioned in [3], the text-based search has
its limitations and is not always a good way to search engineering

http://dx.doi.org/10.1016/j.cad.2012.02.001
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:xchen@cad.zju.edu.cn
mailto:smgao@cad.zju.edu.cn
mailto:guosong@cad.zju.edu.cn
mailto:baijing@cad.zju.edu.cn
mailto:baijing.nun@gmail.com
http://dx.doi.org/10.1016/j.cad.2012.02.001

X. Chen et al. / Computer-Aided Design 44 (2012) 554–574 555
models. After the text-based search, methods for searchingmodels
based on contents have drawn considerable attention, and lead
to numerous corresponding studies in the past decades [4,5].
Specifically, in the engineering domain, shape-based 3D model
retrieval has been well explored [6].

The shape-based methods mainly focus on analyzing the
visual appearances of 3D models and matching the extracted
shape descriptors between them. Although this paradigm may
be effective in some part searching works, it cannot be directly
used in the assembly retrieval. With respect to the assembly
retrieval, which is the focus of this paper, it searches and reuses
complex mechanical assembly models consisting of many sub-
level parts or components. In the assembly retrieval, it is the
product structure and the relationships between components that
are really important, rather than the overall shapes of assembly
models. In otherwords, two assembliesmay be very relevantwhen
their overall visual appearances are quite different. Therefore, the
current shape-based methods are unable to tackle this problem
well. This limitation of shape-based methods can also cause
problems in some specific part searchings [7].

The search method in [3] begins to address the assembly
retrieval in a way other than the shape-based methods. Besides
the overall assembly statistics (e.g. the number of parts), the
mutual relationships and structures existing in assemblies are also
considered in this method. However, this method is yet to satisfy
practical needs due to the following problems:

(a) The hierarchy in product structure is not considered. In high-
level design such as top-down design or innovative design, the
rough query with vague components and main relationships
needs to be supported by an assembly retrieval system. This
cannot be achieved without the hierarchical information.

(b) The semantics of assembly interfaces are not explored. The
assembly interfaces between components in an assembly can
exhibit many different forms under the same kinematical
essentials. Many similar assemblies may be missed in the
search if this information is not utilized.

(c) The indexing mechanism is absent. The efficiency will be a
problem in case of an extremely large library of assemblies.

In this paper, a new assembly retrieval approach is presented
with a view to overcoming the above-mentioned problems. In
particular, a multilevel assembly descriptor capturing the main
characteristics of assembly models is designed first. In this
descriptor, the hierarchical assembly structure and the assembling
semantics are extracted and maintained. Then graph-matching
based algorithms are used to compare the multilevel assembly
descriptors and calculate the corresponding similarities between
assembly models. Finally, an indexing mechanism which supports
sub-graph matching is given to accelerate the assembly retrieval.
In the approach, the information arrangement and corresponding
calculation during search is seamlessly integrated into a unified
framework. Moreover, in the process of calculation, it is flexible
to utilize different portions of the information for different
application requirements. As a result, flexible queries can be
well supported by our assembly retrieval approach. For example,
while a conceptual designer inputs a rough query with abstract
components and the kinematic-pair relationships defined between
them to search out the assembly models similar in high-
level concept, another detailed designer can input a more
concrete query with additional information like shapes, layouts
or geometric-matings defined. Sometimes the different levels of
information can even be mixed together as users want or are
accustomed to. And for sure, queries for general retrieval and
partial retrieval (i.e. the query model can be a portion of the target
model in the assembly structure) are all supported.

The rest of the paper is organized as follows. In the second
section, we give a brief review of related works about CAD
assembly retrieval. In Section 3 an overview of the flexible
assembly retrieval approach is provided. Section 4 defines the
multilevel assembly descriptor at length and illustrates the
corresponding reasons and thoughts behind it. In Section 5 the
details ofmatching and similarity assessment algorithms are given,
while Section 6 describes the indexing and filtering mechanisms.
Section 7 introduces the implementation details of the prototype
system and analyzes the experimental results. Finally, we conclude
the paper and present further work directions.

2. Related works

There are quite a few works dedicated to the content-based
model retrieval. The works here we survey are those most closely
related to mechanical engineering domain.

As is mentioned above, model retrieval works in engineering
can be grouped into three main sub-aspects: the sketch retrieval,
the part retrieval and the assembly retrieval.

The sketch retrieval methods mainly process digital images or
vector drawings. Surveys [8,9] analyzemany relevant works in this
area, and some latest typical works include [10–17]. Fonseca et al.
present a sketch-based retrieval framework in [17] which could
search vector drawings from both CAD and clip-art. The presented
approach use hierarchical topology and geometry information of
vector drawings to establish the indexing structure, hence it could
support both multilevel retrieval and partial retrieval to some
extent.

The part retrieval methods search engineering part models
of various formats, including mesh models, B-rep models, and
feature-basedmodels. Tangelder and Veltkamp [5] give an exhaus-
tive review about content-based shape retrieval methods, while
Iyer et al. [6] survey the 3d shape searching works specifically
relevant to CAD and engineering problems. Moreover, Cardone
et al. [18] make a comprehensive comparison of the similarity
assessment methods focusing on CAD models. Recently, research
in this area is still carried on, and [19–26] are some latest works
about it. Li et al. in [24] present a part retrieval method based
on the FDAG (feature dependency directed acyclic graph) of part
models. The multilevel simplification and sub-part segmentation
are executed on the FDAG of part models to generate the general
shape descriptors and partial shape descriptors respectively. Based
on the descriptors, both multilevel retrieval and partial retrieval
of part models could be well supported. In [25], Bai et al. present
a multimode partial retrieval method to search part models. In
their work, the extended feature tree is first generated from part
models based on the semantic features and the relationships
between them. Then the hierarchical descriptors of local reusable
subparts are calculated according to some design semantics
and heuristics. Finally, the multimode partial retrieval could be
effectively executed between the query and the reusable subparts
in the model library.

Other than the sketch retrieval and part retrieval, the assembly
retrievalmethods put emphasis on finding useful assemblymodels
promptly and accurately according to users’ requirements.

In the past decades, many works have been dedicated to case-
based design, inwhich the ‘‘case retrieval’’ is a crucial step. Aamodt
and Plaza give an overview and discuss the general problem of
the case-based reasoning approach in [27]. The works [28,29]
show the application of case-based reasoning approach in design
for assembly, in which topics like how to represent a design
case, how to modify or retrieve a case have been discussed. Hu
et al. [30] give a case representation and retrieval strategy by using
a hierarchical decomposition tree of the product case based on
object-oriented technology. In [31], Wu et al. present a platform
for rapid design of mechanical products, while a case library is
built up and utilized to help shorten the design cycle. Chao and Liu
in [32] also propose a case retrieval method, in which the welding

556 X. Chen et al. / Computer-Aided Design 44 (2012) 554–574
Fig. 1. The flexible assembly retrieval approach.
and assembly processing information is mainly used. More works
about case-based design could be found in the two comprehensive
reviews [33,34]. The general problem about the retrieval in case-
based design is that the case retrieval often relies on some high-
level knowledge, like properties of function and design concept,
but human intervention could not be totally avoided to get the
necessary knowledge. Usually it would be tedious to manually
establish a useful design category for case retrieval. Meanwhile,
plenty of information like implicit design knowledge kept in
today’s CAD models is not well utilized.

Regli and Cicirello describe the establishment of an engineering
knowledge repository in [35], and in the work, the assembly
search problem is also mentioned. As they describe it, the users
can create some primitives and define various properties and the
relationships between them to start a searching. However, the
details about how to do assembly retrieval are not expanded then.

After that, Deshmukh et al. present comprehensive works on
assembly retrieval in [3,36,37]. The main idea of these works is
mixing multiple assembly retrieval methods into their system,
e.g. searching with the statistics and annotations of an assembly
such as the sizes, the number of parts or the names of designers.
The users can select a method or use several methods together
to get reasonable results from the search. A typical one of these
retrieval methods is the use of mating graph, which can effectively
support the partial retrieval of the assembly. In this method, users
can input a segment of the mating graph as a query and find the
assemblies whose mating graph contains the query. (The Ullmann
algorithm [38] is adopted to handle the sub-graph isomorphism
problem.) However, this cannot support high-level queries well,
since it requires the users to know in advance some segments of
the most detailed implementations in the desired model, while
the design activities often work on some abstract components and
the high-level relations among these components. The orientation
relationships between assembly joints are also used in their
approach, which can be beneficial in some cases. However, this
information is inadequate to support some high-level queries,
e.g. a kinematics-graph of an assembly. Meanwhile, the joints
information needs to be available in the librarymodels beforehand
in the work, which most of the assembly models do not normally
provide. Moreover, the mainstream exact sub-graph isomorphism
algorithms do not run in polynomial time, and there are no
indexing mechanisms described in the works dedicated to the
acceleration of the partial retrieval. Once the model library gets
bigger (200 assemblies are used in the experiments of the work),
the efficiency of the algorithm may become a bottleneck.

Recently, more and more attention is paid to the ontology-
based technology. Gaag et al. [39] present a function-basedmethod
for retrieving design solutions. In their approach, existing solu-
tions are described in terms of functions which are realized in an
ontology model, and then the semantic search and reuse can be
conducted based on the built structure. However, the establish-
ment of ontology structure is nontrivial. Many design documents
are needed to extract the necessary information, and the built
structure is often restricted to some specific applications. Similarly,
there are some other retrieval relatedworks focusing on some spe-
cific application domains, such as [40,41]. Kim et al. describe an
assembly model retrieval method based on theWeb Services tech-
nology in [42], but their focus is on the data exchange between
cooperators in collaborative design, rather than search relevant
assemblies from a large product database.

Today’s industrial applications tend to havemore requirements
onmodel retrieval for multilevel, partial and semantic characteris-
tics. It can be seen that recent research has also noticed the trends
and presented quite a few approaches to address it in sketch re-
trieval and part retrieval. Besides the sketch retrieval and part re-
trieval mentioned in the works above, we believe that today’s as-
sembly retrieval should also possessmultilevel, partial and seman-
tic characteristics, which are the very objectives of the work in this
paper.

3. Overview of the flexible assembly retrieval approach

Fig. 1 shows the overview of our flexible assembly retrieval
approach. It could be seen that our approach contains three main
parts, i.e. the online processing, the offline processing and the
assembly database. Here we give a brief description of each part
respectively:
a. Assembly database
The assembly database stores all the necessary data involved
in both online processing and offline processing, including all
the assembly models collected from internet repositories, the
multilevel assembly descriptors generated from these models for
matching and an indexing structure established on these models
for filtering.Moreover, the correlations between these data are also
maintained.

X. Chen et al. / Computer-Aided Design 44 (2012) 554–574 557
b. Online processing

The online processing starts when a user inputs a query and ends
with exporting the assembly models similar to the query. This
processing requires high efficiency to respond promptly to the
users; meanwhile good distinguishability is also needed to provide
accurate retrieval results in a reasonable rank order. Two main
steps are contained in this processing:

Filtering

In this step, a fast filtering is carried out based on the indexing
structure stored in the assembly database. Several discriminating
keys are first calculated from the input query, and then the keys
are used to search in the indexing structure to rapidly exclude
abundant assemblies in the library that are unable to match the
input query appropriately.

Matching

After rough filtering, the remaining assembly models still need
to be compared with the input query in a more subtle way. The
graph-matching based algorithm is adopted in this step to
conduct the calculation, with the help of the multilevel assembly
descriptors stored in the assembly database. Based on the match-
ing results, discriminatory similarities between the input query
and the assemblies in the database are calculated. Finally, the
corresponding assemblies in the assembly database are sorted by
similarities and retrieved for the users.

c. Offline processing

The offline processing handles all the models in the assembly
database and pre-calculates all the relevant data needed by online
processing. These pre-calculated data are then stored into the
assembly database. By this prior processing, the operations and
calculations in real-time search can beminimized to provide fluent
human–computer interaction. There are also twomain steps in this
processing:

Describing

In this step, all models in the assembly database are parsed
and analyzed to generate their corresponding descriptors. These
assembly descriptors contain multilevels of data, including the
topological structures which depict the whole product structure,
the assembling semantics which indicate the mutual relationships
between product components, and the geometric information
which reveals the product layout and component shapes.

Indexing

After the multilevel assembly descriptors are generated, an
efficient assembly indexing structure is established to support the
filtering step. Here the topological structures with a portion of
the assembling semantics in the assembly descriptors are used to
calculate the discriminating keys, and then the keys are inserted
into an indexing structure called NB-Tree. Moreover, a subdivision
mechanism is used here to enable the support of partial retrieval
from the indexing structure.

In general, the presented assembly retrieval approach utilizes
more semantic information than previous content-based retrieval
approach in achieving better discriminability. Meanwhile, differ-
ent levels of information are arranged into a unified calculation
framework to facilitate the support of different search styles.
Besides that, prompt partial retrieval of assembly models can be
better supported through the specific indexing strategies. All the
details about these characteristics and main steps of the approach
will be given in the following sections.
4. A multilevel assembly descriptor

In order to effectively achieve flexible assembly retrieval,
a reasonable and comprehensive assembly descriptor involving
various levels of data from high-level information such as
kinematical properties to low-level information like geometric
shape is a prerequisite.

In the work, we present a multilevel assembly descriptor for
both queries and database models involved in assembly retrieval.
The information in the presented assembly descriptor is multilevel
in three aspects. First, it includes topological structure, assembling
semantics and geometrical information; second, the topological
structure is hierarchical; third, the assembling semantics has
multiple layers. The details about them are given below.

4.1. Topological structure

The presented assembly descriptor is based on a topological
structure which can be one of the most distinguishable character-
istics between different assemblies, i.e. the hierarchical assembly
structure.

In general, the assembly descriptor used in the work is rep-
resented upon a hierarchical data structure [43], which is the
foundation of today’s mainstream assembly representation. In the
hierarchical assembly structure, the ‘‘part-of’’ relationship repre-
sents the connections between an assembly and its components,
while the assembly interface represents the connections among all
the components of an assembly. It is important that a component
of an assembly can still be a subassembly, which in turn has its
own subcomponents. Those leaf components without children are
called parts, which are the elementary components in an assembly
model. As a result, a treelike hierarchical structure is formed based
on the assembly, subassemblies, components and the relationships
between them.

Fig. 2 shows an engine model and its corresponding hierarchi-
cal assembly structure. The engine is composed of six components,
i.e. one main block, one crank shaft, two pistons and two con-
necting rods. The connecting rod itself is a subassembly, which is
again composed of two subcomponents, i.e. the upper rod and the
end cap. As shown in the figure, the part-of relationships (blue
edges with arrows) form a two-level treelike structure, which
illustrates how the whole engine model is composed from many
components, including subassemblies and parts. Moreover, the
assembly interfaces (red edges) form three graph structures, cor-
responding to the top engine assembly and the two connecting rod
subassemblies respectively. The graph structure is the assembling-
graph illustrating how the components are connected together. In
fact, these connections imply the cooperation manners between
the components which finally make the assembly work.

Some previous works use connections among all parts in an
assemblymodel as the topological descriptor to search assemblies.
Instead of that, we adopt the hierarchical descriptor here for the
following three reasons:

(a) Hierarchical representation contains more implicit design
intents than a flat graph, and it is better supported by modern
CAD systems. The product construction sequence, component
proximity, relative importance and some other information
can all be more clearly seen in a hierarchical representation.

(b) Assembly retrieval for high-level design such as top-down
design or innovative design can be better supported. In
these design works, the high-level structure, consisting of
major components or subsystems of the desired product with
the desired interfaces, relationships and constraints among
them [44,45], is crucial, and the components defined can even
be vague and incomplete in geometric details. Therefore, when
users provide a query for assembly retrieval in design works,

558 X. Chen et al. / Computer-Aided Design 44 (2012) 554–574
Fig. 2. The hierarchical assembly structure of an engine model.
(a) Chair models with main
components.

(b) Back view
of chair
models.

(c) Query structure. (d) Non-hierarchical
structure.

(e) Hierarchical
structure.

Fig. 3. High-level structure preservation of the hierarchical representation.
they firstly tend to think of the model structure as simple as
possible (in high-level), that is, the trivial details will be simply
ignored. On the other hand, the hierarchical representation
for an assembly can just maintain this kind of high-level
structure, i.e. main components and main interfaces between
those components without interference from plenty of part
details. Fig. 3 shows this idea and illustrates what benefits the
hierarchical representation could bring. Two chairs with their
front view (Fig. 3(a)) and back view (Fig. 3(b)) are shown. In
high-level design, a structure shown in Fig. 3(c) may be input
as a query with four high-level components (corresponding to
the backrest, the seat, the bracket and the base annotated in
Fig. 3(a) respectively) and their interfaces defined. However,
the chair models are composed of much more parts other
than the four main components. For example, the bracket is
composed of 18 subparts in the above chair model and is
composed of 6 subparts in the bottom chair model. Therefore,
the non-hierarchical representations of these chairs tend to
be quite messy (Fig. 3(d)) and are unable to match the
query structure appropriately. In contrast, the hierarchical
representations of these chairs (Fig. 3(e)) can match the query
perfectly since the top-level components and relationships are
maintained. The red edges in Fig. 3(e) are the second-level
relationships between second-level components, which could
be seen as the inner-relationships of top-level component 3′

(the bracket).
(c) Partial-retrieval could be better supported since the hier-

archical representation has many meaningful subassemblies
defined in it.

4.2. Assembling semantics

The assembling semantics describes the essential connotations
of the interactive relationships between components in an
assembly, which are fundamental to the function and behavior of
the assembly.

4.2.1. Semantic assembly interface
In the presented assembly descriptor, the assembly interface is

also defined as multilevel. Table 1 shows the semantic assembly
interface representation used in our assembly descriptor.

X. Chen et al. / Computer-Aided Design 44 (2012) 554–574 559
Table 1
Semantic assembly interface.
(a) Cylinder. (b) Slotted cylinder. (c) Slider with pin.

Fig. 4. Different implementations of the same DOFs.
There are three major levels in this descriptor: the function
layer, the implementation layer, and the geometry layer. Informa-
tion in each layer is more abstract and intensive than in the layers
below it.
Function layer:
This layer represents the design abstraction of an assembly
interface. Ambrósio and Eberhard [46] describe three major stages
for the essential engineering design tasks in the systematic
development process of rigid body mechanisms, in which the
determination of the degree-of-freedom (DOF) is put in the first
step. Meanwhile, Molian [47] and Chiou and Sridhar [48] have also
mentioned that the DOF is the intrinsic property of a mechanism.
As a result, what we put here in the first layer is the statistical
information about the relatively independent DOF between
connected components of an assembly interface, i.e. counts of
translational, rotational and composite DOFs. Composite DOF is a
specific DOF as the result of constraining multiple DOFs together,
e.g. the 1-composite DOF in the screw joint is the effect of imposing
a fixed ratio between 1-translational DOF and 1-rotational DOF.
Actually, there can be different ways for implementing the same
DOF requirements, i.e. the same design abstraction (Fig. 4 shows
three different implementations of 1-translational DOF and 1-
rotational DOF).
Implementation layer:
Information in this layer describes the ways selected by designers
for implementing the design objective of the interface. The counts
of various kinds of kinematic pairs and interface parts are stored
in this layer. Generally, kinematic characteristics in most assembly
interfaces are composed of several elemental kinematic-pairs from
the ones we selected, which include six lower-pairs (Fig. 5 shows
the sample geometrical forms of them.) and some typical higher
pairs.

Interface parts are specific parts which are only meaningful for
implementing assembly interfaces and do not participate in any
other main functions. These parts are further divided here into
two subtypes, i.e. the essential and the accessorial. The essential
interface parts are crucial for kinematic implementation (e.g. the
black parts of the swivel joint in Fig. 6(a)), while the accessorial
ones do not affect essential kinematic property of the assembly
interface and could thus be ignored (e.g. the bearing in Fig. 6(b))
in a way.
Geometry layer:
This layer contains various kinds of geometric-matings typically
used in today’s assembly modeling. (The information in the table
is established based on SolidWorks.) Counts of these geometric-
matings expose information about the detailed shape of an
assembly interface.

4.2.2. Multiple interpretations
Since the assembling graphs in the hierarchical assembly

structure (see Fig. 2) are composed of components (nodes) and
assembly interfaces (edges), the assembling graph can actually
be interpreted as multiple graphs (Fig. 7) with different levels of
information according to the definition of the semantic assembly
interface.

Due to the possibility of multiple interpretations, users could
import a quite abstract assembling graph as the query, such as
the DOF graph (Fig. 7(a)) or the kinematics graph (Fig. 7(b)).
Moreover, if there is amodule for designing the schematic diagram
of mechanism, the diagram could be directly converted to a
kinematics graph and used as a query for assembly retrieval, which
is shown in Fig. 8.

The geometric-mating graph (Fig. 7(c)) is used in previous
work [3] as a kind of descriptor for assembly retrieval. However,
the method may not be very effective when users want to use
high-level knowledge in assembly retrieval. For example, the two
assemblies in Fig. 9 have different geometric-matings, but they are
just two geometric forms of a prismatic-pair. If geometric-mating
graph is used alone, the two assemblies are not similar at all,
though they have the same kinematical semantics. Once the users
input a graph with only geometric-mating information, either of
the two assemblies cannot be retrieved. On the other hand, if the
users input a graph with high-level kinematical information, the
two assemblies in Fig. 9 can all be retrieved.

560 X. Chen et al. / Computer-Aided Design 44 (2012) 554–574
Fig. 5. Sample geometrical forms of lower kinematic-pairs.
Fig. 6. Samples of interface parts. (a) swivel joint; (b) bearing.

In general, with the three different levels of information, the
assembly descriptor could take full advantage of rich design
knowledge embedded in assemblymodels and could supportmore
flexible queries. (These information could even be mixed together
as users want, see Fig. 7(d).) As a result, not only the assemblies
similar in low-level, but the assemblies similar in high-level can
also be retrieved.
4.3. Geometrical information

The topological structure with the assembling semantics in
multilevel assembly descriptor gives the skeleton of an assembly,
which represents the global characteristics and dominates the
similarity between two different assembly models. On the other
hand, the geometrical information is like the corresponding
muscles of an assembly model, which represents the local
characteristics and acts as supplementary information.

Each node in the topological structure represents a compo-
nent of the assembly model. Geometrical shape information is
calculated for each component of an assembly model and stored
in its corresponding node as properties. Here in the multilevel
assembly descriptor, different types of components need different
calculations for the geometrical information (Fig. 10). If the com-
ponent is a part, shape distribution vector [49,50] of the part shape
is computed; if the component is an assembly or a subassembly,
the shape distribution vector of the bounding-box (or convex-hull)
of the component is computed. In addition, the geometrical center
of each component is also calculated and stored into the nodes of
Fig. 7. Multilevel interpretations of assembling graphs.
Fig. 8. Schematic diagram of mechanism as query.

X. Chen et al. / Computer-Aided Design 44 (2012) 554–574 561
Fig. 9. Two geometric forms of prismatic-pair.
Fig. 10. Shape distributions of part and assembly.
the descriptor. The geometrical information collected here is fur-
ther re-organized together for the comparison of assemblymodels,
which is discussed in the section of assembly matching.

4.4. Other useful information

Besides the information described above, there is some other
product information which can be quite helpful for searching
assemblies, including but not limited to:
Functions—the specific processes, actions or tasks that a system or
component is able to perform.
Loads—the forces, deformations or accelerations applied to a
structure or its components.
Environmental conditions—the environment in which the product
is expected to work such as the temperature or safety factors.

The semantic information can reduce the search space and
accelerate the assembly retrieval indubitably. Unfortunately, most
of the existing assembly models we get from the internet
repositories do not have the accompanying design documents or
specifications which are necessary for extracting the semantic
information. Therefore, we could not use the information in the
work currently but just reserve the corresponding positions in
descriptors. How to extract and utilize the information will be
considered in the future. In fact, once the information is present
or extracted, it can be incorporated into our multilevel assembly
descriptor seamlessly as suitable properties in the hierarchical
assembly structure.

4.5. Generation of multilevel assembly descriptors

The hierarchical assembly structure information can be ex-
tracted from CAD assembly files. The part-of relationships are
parsed to construct the hierarchical tree. On the other hand,
the assembly interface relationships are established based on the
geometric-matings defined between components in an assembly.
Once there are one or more geometric-matings between two com-
ponents, an assembly interface is created between them.
Multilevel information in the semantic assembly interface is
generated from bottom-level to top-level. After the construction of
the hierarchical assembly structure, the information on geometric-
matings in an assembly interface is already extracted and stored.
Then, the kinematic-pairs and DOFs are derived from the infor-
mation about geometric-matings based on the automatic iden-
tification approach of kinematic-pairs mentioned in report [51].
The general idea is firstly mapping each geometric-mating in an
assembly interface to the elementary type of translational and
rotational freedom, and then all the elementary freedoms in an
assembly interface are reduced based on the reducing rules of
freedom presented in [52]. Finally the reduced freedom of an as-
sembly interface is mapped to the corresponding kinematic-pair.
(Tables in the section of Appendix show the relevant definitions,
mapping and reducing rules.) With this method, some typical
kinematic-pairs can be identified automatically, and the gear-pair
is identified by another method mentioned in [51]. Other complex
kinematic-pairs defined in the descriptor are labeled manually in
the work if they appear in the assembly models. The interface-
part is also manually labeled currently; the reasonable automatic
identification of the interface-part should be addressed in the
future because of its non-ignorable role in the graph-based struc-
ture. Fortunately, most of the models used in the current work can
be automatically parsed without human intervention.

Geometrical information is generated on each component of the
assembly model. Shape distribution information is calculated by
themethod presented in [49] for components’ shapes; Geometrical
center of each sub-component’s shape is also calculated and is used
when comparing their parent assembly’s layout information in the
matching step.

Fig. 11 shows an example about the generation of multilevel
assembly descriptors. The hierarchical assembly structure is
shown in Fig. 11(b), while the first-level assembling graph of the
bike assembly is shown in Fig. 11(c). Fig. 11(d) shows the typical
information generated and stored in edges and nodes. The number
labeled on the graph edge is the DOF information, e.g. ‘010’ means
zero translational-dof, one revolutional-dof and zero composite-
dof.

562 X. Chen et al. / Computer-Aided Design 44 (2012) 554–574
(a) A bike assembly. (b) Hierarchical assembly structure.

(c) First-level assembling graph of the multilevel assembly
descriptor.

(d) Information in edges and
nodes.

Fig. 11. Sample of the multilevel assembly descriptor generation.
Finally, the storing of multilevel assembly descriptors is based
on its hierarchy structure. Each unique subassembly in an as-
sembly is stored separately as a single item in the database, and
its corresponding descriptor has just one sub-level topology ex-
panded. Correlations are established between these subassemblies
for reconstructing thewhole hierarchy structure during thematch-
ing process. This strategy can minimize the storing size and the
comparing time, and the partial retrieval of subassemblies can be
achieved more conveniently at the same time.

5. Assembly matching

During the assembly retrieval, the query descriptor needs to
be compared with the assembly descriptors in the database to
get the similarities between them. Since the multilevel assembly
descriptor contains abundant information, thematching process is
divided into the following two main steps.

5.1. Primary comparing

The topological structure of the multilevel assembly descriptor
is firstly compared, and an effective and efficient graph matching
algorithm is needed. Here we do a hierarchical graph matching
based on the VF2 sub-graph isomorphism algorithm [53] for its
exactness and high performance. An exhaustive survey of the
graph matching algorithms can be found in [54].

Fig. 12 shows an example of the hierarchical graph matching
process. At first, the sub-graph isomorphism algorithm is executed
on the top-level assembling graphs of the twoassembly descriptors
to be compared. Then, if any node in the top-level assembling
graph of the query is a subassembly, the sub-graph isomorphism
algorithm is executed recursively between the graph under this
node and the graph under the matched node in the descriptor
of the database assembly. Finally, if a corresponding node in the
descriptor of the database assembly has been found for each
node in that of the query, then a successful match between the
multilevel assembly descriptors is found. As shown in the process,
partial retrieval can also be well supported by the matching
algorithm.

In the process, the sub-graph isomorphism algorithm uses not
only the topology of assembling graph, but also some assem-
bling semantics information to help the search space pruning
in the algorithm. The degree-of-freedom information (mentioned
in 4.2.1) in the corresponding edges are required to be equal
between two assembling graph; On the other hand, there is a value
stored in each node as a property representing the count of child
nodes under this node (for part, the value is 0), and this value in the
node of the query graph is required to be less than or equal to the
value of the corresponding node in the graph of the databasemodel
(otherwise, the recursion cannot be carried on appropriately).

A successful match M is a mapping from descriptor D1 to
descriptor D2, in which each node n in D1 is mapped to a node
M(n) in D2 and each edge e in D1 mapped to an edge M(e) in D2.
This injective mapping is not bidirectional since it is regarded as
validate in thework that the query descriptor topology is a subpart
of the assembly descriptor topology in the database but not vice
versa.

5.2. Secondary refining

After a successful match M is found, the similarity between
two descriptors needs to be calculated based on the match M

X. Chen et al. / Computer-Aided Design 44 (2012) 554–574 563
Fig. 12. Hierarchical graph matching between assembly descriptors.
and the properties in corresponding nodes and edges of the two
descriptors. According to the assembly interfaces of the assembly
descriptor, nodes in the descriptor can be divided into different
isolated assembling graphs. For example, the query descriptor
in Fig. 12 has two assembling graphs, i.e. (B, C,D) and (E, F),
which aremapped to assembling sub-graphs (B′, C ′,D′) and (E ′, F ′)
respectively. The similarity is calculated as the weighted sum of
the similarities of thematched assembling graph-pairs. A heuristic
rule about the weight setting is that the weight of the high-
level assembling graph is larger than the weight of the low-level
assembling graph (here the word ‘‘level’’ refers to that of the
hierarchical structure).

Similarity(M) =

g∈Descriptor

ωg ∗ Similarity(g,M(g))
g∈Descriptor

ωg = 1.

For eachmatched assembling graph-pair (g,M(g)), the calcula-
tion of similarity can be divided into two parts, i.e. the assembling
similarity and the geometrical similarity.

5.2.1. Assembling similarity
The assembling similarity mainly describes how similar two

assembling graphs are in their topological structure. For each
matched edge-pair in a matched assembling graph-pair, the
similarity between the two assembly interfaces represented by the
matched edge-pair is calculated, and their weighted sum is the
assembling similarity between the two assembling graphs in the
matched pair.

Similarity(g,M(g)) =

e∈g

ωe ∗ Similarity(e,M(e))
e∈g

ωe = 1.

The calculation of the similarity between two assembly
interfaces is based on the definition of the semantic assembly
interface (4.2.1). There are four categories of values stored in an
assembly interface as shown in Table 1. The first category DOF
is used in the sub-graph isomorphism algorithm as described
above, and the other three categories of values are used here to
calculate the similarity between two assembly interfaces. Each
category has its own weight and heuristically the category in the
implementation layer has greater weight than the category in the
geometry layer of the semantic assembly interface. The similarity
between two assembly interfaces is the weighted sum of the
similarity between two corresponding categories.

Similarity(e,M(e)) =

c∈Category(e)

ωc ∗ Similarity(ec,M(e)c)

Categories(e)
= {kinematic-pair, interface-part, geometric-mating}

c∈Categories(e)

ωc = 1.

The similarity between two corresponding categories is then
calculated as one minus the distance between them. This distance
is the weighted sum of the distance between corresponding values
in each type slot (e.g. type ‘‘prismatic-pair’’ in category ‘‘kinematic-
pair’’). The weight of each type slot is defined uniformly among
all types in a category. Moreover, the value of a type-slot is a
count corresponding to the type, e.g. the count of prismatic-pairs
presented in an assembly interface.

Similarity(ec,M(e)c) = 1 − Dist(c)

Dist(c) = ωt ∗

t∈Types(c)

Dist(t)

Types(c) = {all types in category c}

ωt =
1

Cardinality(Types(c))

Dist(t) =
|(et − M(e)t)|
Max(et ,M(e)t)

.

Fig. 13 shows the main steps in the calculation of assembling
similarity. In general, this calculation mainly uses the properties
of the topological edges; hence the result can reflect the similarity
between two different assembling structures.

5.2.2. Geometrical similarity
Other than the assembling similarity, the geometrical similarity

mainly describes how similar two assembling graphs are in
their geometrical properties. There are two kinds of information
involved in the calculation of the geometrical similarity: layout and
shape.

564 X. Chen et al. / Computer-Aided Design 44 (2012) 554–574
Fig. 13. Assembling similarity calculation.
(a) Assembly-bone. (b) Angle table.

Fig. 14. Layout information for geometrical similarity calculation.
Layout information
The layout information mainly describes how the components
of an assembly are arranged in the 3D space. This information
can play a good role supplementary to the assembly’s assembling
structure in topology. An abstract representation ‘‘assembly-
bone’’ which describes the layout of an assembly is shown in
Fig. 14(a).
The assembly-bone is a spatial geometrical-structure composed
of several line segments connecting the geometric-centers of
components. Each line segment for connecting the geometric-
centers of two components is present only when there is a
corresponding assembly interface between the two components.
A natural method for comparing two assembly-bones is extracting
their shape-distribution vectors as in [49]. However, the matched

X. Chen et al. / Computer-Aided Design 44 (2012) 554–574 565
assembling graph in the database model may often be a sub-
graph of the whole assembling graph. Since it is impractical
to compute the assembly-bones of all the sub-graphs when
establishing the database because of the unacceptable time and
space requirements, the shape-distributions have to be computed
during real-time comparing, which will waste too much retrieval
time. As a result, we use another method ‘‘angle table’’ (Fig. 14(b))
here for a comparison of the assembly-bones. The angle table
is an N × N matrix. N is the count of edges (line segments)
in the assembly-bone. The row and column represent the edges
of the assembly-bone listed in an assigned order. A value in
position [i, j] is the spatial angle between the ith edge and the
jth edge. If two edges are not connected directly (to a unique
geometric-center), the corresponding value is left unassigned.
When the corresponding angle tables of two assembly-bones are
constructed, they could be compared as vectors (Rows in matrix
can be concatenated.), and the result of the comparison is the
layout similarity between the two matched assembling graphs. A
pre-requisite of this comparing is arranging the edges in the two
tables in the same order based on the result M of the topological
match mentioned in 5.1. (Each edge in one assembly-bone has its
matched edge in the other one.)
Shape information.
The shape information describes the shapes of sub-components
in the assembling graph. As mentioned in Section 4.3., the
shape distribution vectors of the sub-components are calculated
in advance. Here these vectors are compared directly, and
the weighted sum of the similarities between the vectors of
corresponding sub-components is the overall shape similarity
between two matched assembling graphs.
After the assembling similarity and geometrical similarity are
calculated respectively, their weighted sum multiplied by an
attenuation factor is the similarity between two assembling graphs
in amatched assembling graph-pair. The attenuation factor depicts
how much the matched assembling sub-graph takes up as a sub-
part in the original one in the descriptor of the database model
(e.g., how much (B′, C ′,D′) takes up in (G′, B′, C ′,D′,H ′) as shown
in Fig. 13). At last, all the similarities between assembling graph-
pairs in a successful match are summed together as described
before to get the final result.

One thing deserving to be mentioned is that, since the steps
in similarity calculation are independent to some extent, flexible
calculation in practical assembly retrieval can be provided. For
example, when a user submits a query without geometrical
information, the calculation of geometrical similarity can be
omitted. Moreover, when a user submits a query with only DOFs
and kinematic-pairs information, the comparison of geometric-
matings can also be omitted in the calculation of assembling
similarity. This kind of flexibility gives the users many extra-
controls and extra-conveniences on submitting the query during
practical assembly retrieval, and different levels of matching for
assembly retrieval can be carried out according to the input query.
Meanwhile, partial retrieval can be well supported since (a) all
subassemblies are parsed and stored as candidates in advance, and
(b) the matching algorithm has the ability to find partial segments
similar to the query in target graphs.

6. Assembly indexing and filtering

Although the VF2 sub-graph isomorphism algorithm used in
the hierarchical graph matching is a quite efficient algorithm
among the exact graph matching algorithms, it may still make
the response time unacceptable when the amount of assemblies
in the library becomes extremely large during practical assembly
retrieval. Therefore, an efficient indexing structure for quick
filtering of unmatchable models should be established for the
assembly library to accelerate the assembly retrieval, especially the
partial retrieval.
6.1. Indexing

To index the multilevel assembly descriptor, statistical values
such as the number of components can beuseful inmany cases, and
it is not hard to integrate these values into our assembly retrieval
approach. Here, another indexing mechanism which has better
discriminability and good efficiency is presented.

In the indexing mechanism, the first thing that needs to be
done is vectorizing the multilevel assembly descriptor. We choose
to vectorize the first-level assembling graph of the assembly
descriptor because of its key-role for discrimination of assemblies.
The heuristics behind is that if the descriptors of two assemblies
cannot be matched appropriately on topology of the first-level
assembling graph, then they are not regarded as similar models.
There are many studies on the vectorization of graphs, such as
the spectral graph theory [55] which studies the adjacency matrix
of graphs by means of linear algebra. In the work, we adopt
the random walks method discussed in [56] to vectorize the
assembling graph for its good discrimination ability.

A Random Walk (RW) on a given graph G is described by a
probabilistic model which allows us to compute the probability
xp(t) of being located in each vertex p at time t . A steady state
distribution of the RW can be calculated as:

x∗
=

1 − d
N

(I − dW)−1

=
1 − d
N

∞
k=0

dkW k
•

,

where d is the damping factor,

is a vector whose entries are all
equal to one and W is a matrix whose element at position [i, j] is
the probability of following an edge fromvertex i to vertex j. If there
is no edge connecting vertex i and vertex j, the value is 0. If there is
edge connecting vertex I and vertex j, then the probability is given
as:

x(j|i) =
f (vj, vi)

k∈ch[i]
f (vk, vi)

.

The ch[i] is the set of vertices directly connected to vertex i. The
function f is the tendency function which calculates the tendency
value of following an edge from vertex i to vertex j by using the
node properties or edge properties. The tendency value used in the
work is the integer value calculated from the DOFs information
in an assembly interface. For example, one translational and one
rotational DOF without composite DOFs are expressed as integer
110. The details about the random walk method can be found
in [56].

The steady state distribution vector as is calculated above is
an n-dimensional (n is the count of nodes in the graph) vector
which can be used as an abstraction of the assembly descriptor.
Therefore, the indexing structure should be able to support the
searching in high-dimensional spaces ([57] is a good survey
for the high-dimensional indexing techniques). Here we adopt
an indexing structure NB-Tree [13] for its simplicity and high
efficiency. In general, it calculates the Euclidean norm of an input
high-dimensional vector and inserts this norm into a B+-Tree as
the key. Based on this, each assembly or subassembly in the library
is parsed and the corresponding graph vector is extracted and
inserted into the NB-Tree. The whole process described above is
shown in Fig. 15.

The indexing process described above can be carried out on
all descriptors of the assemblies or subassemblies in the library.
Although the subassemblies extracted are all useful subparts of
the original models and can support the partial retrieval to some
extent, there are still some cases in which the input query is only a
segment of the target assembling graph, e.g. the sample shown in
Fig. 13, and in these cases, subassemblies are unable to contribute
more. During the matching process described above, this is not a
problem because the sub-graph isomorphism algorithm will find

566 X. Chen et al. / Computer-Aided Design 44 (2012) 554–574
Fig. 15. Indexing steps of an assembly descriptor.
(a) Original graph. (b) Minimum cycle basis.

Fig. 16. A sample graph and its minimum cycle basis.
Fig. 17. Flow chart of the filtering process.
all graphs which contain the query graph. However, during the
indexing process, it requires a suitable mechanism for indexing
such sub-graphs if partial retrieval needs to be well supported.
Obviously, indexing of all sub-graphs of an assembling graph
is unpractical because of the huge amount of space and time
requirements. Hence,we present a sub-graph indexingmechanism
in the work to support the partial retrieval better.

In the sub-graph indexing mechanism, the first-level assem-
bling graph is first divided into some meaningful subparts. Then
these subparts are converted to their RW vectors as mentioned
above to be inserted into the NB-Tree structure. Currently, the di-
viding strategy is based on a simple heuristic experience: cycles in
the assembling graphmay often represent atomic-subparts of the orig-
inal model. However, the enumeration of all cycles is also unpracti-
cal because the number of cycles can grow exponentially with the
number of vertices; hence we choose to calculate the minimum-
cycle-basis (MCB) of the assembling graph. For the details about
the MCB finding algorithm used here, one can be referred to [58].
Based on the MCB, the number of cycles found is controlled by the
cyclomatic number (e − v + p), where e is the number of edges, v
the number of vertices and p the number of connected components
of the graph. Fig. 16 shows a sample graph and its MCB.

After the MCB is found, the repetitive cycles (‘‘repetitive’’ in
that the topology and properties of the cycles concerned are all
the same) in the MCB are then discarded because the same cycle
does not need to be indexed more than twice; otherwise it will
increase the responding time of assembly retrieval. An example of
repetitive cycle can be found in the first-level assembling graph of
Fig. 2. Finally the cycles left without repetition are inserted into the
NB-Tree for further filtering of unmatchable assemblies.

6.2. Filtering

During assembly retrieval, a filtering process is executed to
exclude the unwanted assemblies based on the indexing structure
established beforehand as mentioned in 6.1. The flow chart of the
filtering process is shown in Fig. 17. In the process, the first-level
assembling graph in the query descriptor is subdivided into several
sub-parts, and then the original graph and these sub-parts are all
vectorized and normalized in the same way as described in the
indexing step. After that, the calculated norms are used as the
indexing keys to search in the NB-Tree structure. Finally, the IDs
of the database models matched to any of the keys are returned as
the filtering result.

There are two different strategies for the subdivision of query
graphs: (a) when the query graph is not very large, all cycles of
the query graph are found out to generate the indexing keys; (The
details of the algorithm for finding all cycles of a graph can be found
in [59].) (b) when the query graph is larger than a threshold, only
MCB is found on the query graph to generate the indexing keys.
However, the filtering accuracy may decrease in this case since
some cycles present in the query graphmatchable to library graphs

X. Chen et al. / Computer-Aided Design 44 (2012) 554–574 567
(a) Matching of key 1.

(b) Matching of key 2.

Fig. 18. Searching in the indexing structure.
may be missed in the search occasionally. Fortunately, the query
is usually not very complex because of customers’ habits during
searching.

The process of searching in the indexing structure is shown
in Fig. 18. Each indexing key generated from the query is used
to match the keys in the indexing structure, and a hit table is
maintained at the same time. The hit table records the hit count
of assembly IDs in the library. Every time a key-match is found,
the hit count of the corresponding id increases by one. After all
the indexing keys from the query are searched, the records in
the hit table can be sorted by the hit count, as more hits implies
more opportunities for the query to be matchable to an assembly.
Then the corresponding IDs of the top-N records (The parameter
N can be controlled by users.) can be selected for direct feedback
or further matching process. All the assemblies without any hit are
then discarded.

Although the filtering process may not seem intuitive, it indeed
works well in practical assembly retrieval. The reasons behind are
these: (a) if the first-level assembling graph of the query is the
same with the graphs of library assemblies, they may very likely
be matched successfully; (b) if the graph of the query contains one
or more cycles of MCB of the library graphs, the query may very
likely be a sub-graph of the library graphs.

7. Implementation

7.1. System

The proposed assembly retrieval approach has been imple-
mented in a multi-module prototype system. The UI module
(Fig. 19) is developed by using Microsoft Visual C# 2008, while
the core module for the matching of descriptors (based on the
VFLIB [60]), similarity assessment, indexing and filtering is devel-
oped by using Microsoft Visual C++ 2008, which is built as a win32
library invoked by the UI module during retrieval. Besides the two
main modules, a C++/CLR module is developed as the translator to
deal with the interoperability between them. Moreover, Mysql5.0
is used as the database system and GraphViz2.26.3 is used for
visualization of graphs.

Currently, ourmodel library for retrieval contains 2249parame-
terized assemblymodels and 10062 partmodels (SolidWorks2009
type) downloaded from the engineering models repository [61] on
the web. Fig. 20 shows a portion of the assembly models in the
library. Meanwhile, an assembly descriptor generator is written by
Microsoft Visual C# 2008 as a plug-in tool to interact with Solid-
Works2009 system for parsing models and generating the assem-
bly descriptors.

7.2. Search samples

As is mentioned above, high-level topology could be directly
used to search assemblies in our approach. Fig. 21 shows two
sample results obtainedwith the kinematics-graph query. The first
query is a structure with six revolute-pairs concatenated together,
and the five top results shown are 6-DOFmechanical-handmodels.
The second query is a human-like structure with spherical-pairs
as the interfaces between different parts, and the six top results
shown are different human-like creatures.

We alsomake an application of our assembly retrieval approach
to top-down assembly design [62]. During the top-down assembly
design, skeletons, which are preliminary structures with some
rough child components connected together through assembly
interfaces, are often designed first to conduct the following design
works. Here, an individual module is used for parsing the skeleton-
based query, and assemblies similar to the query are retrieved
by the system, which could be further reused to facilitate the
following design works. Fig. 22 shows some sample queries and
the corresponding top results (similarity >80%) retrieved.

It can be seen from the search results that the retrieved
assemblies possess assembly interfaces with different geometric
details (Fig. 23(a)). The upper one is a dove-tail connection while
the bottom one is a compound pin-hole connection. However,

568 X. Chen et al. / Computer-Aided Design 44 (2012) 554–574
Fig. 19. User interface of the flexible assembly retrieval system.
Fig. 20. Some assemblies in the model library for retrieval.
Fig. 21. Search samples of the assembly retrieval system (kinematics-graph query).
the two assembly interfaces both possess one translational DOF
and one prismatic pair (sliding). In other words, these two
assembly interfaces have the same kinematic characteristics (both
coincide with the query) but different geometric-matings. This
case can demonstrate how semantic assembly interfaces act on the
assembly retrieval, while low-level differences in assemblies do
not exclude them from retrieval results but affect the similarities
instead.

Fig. 23(b) shows the search details that demonstrate the effect
of using the hierarchical assembly structure. The connecting-rod
in the skeleton-based query is a single component while the
corresponding component in the retrieved engine assembly is a
sub-assembly. If hierarchical structure is not used, the assembly
interface for the rod sub-assembly between the ‘‘upper-rod’’ and
the ‘‘end-cap’’ may be defined externally. As a result, the engine
assembly would be abandoned during the assembly retrieval.

The support of partial retrieval can be given from two aspects:
one is that the retrieved assembly is a sub-assembly of a bigger
one, e.g. the results of the sample search for engine skeleton in
Fig. 22 are subassemblies of complex truck models; the other is

X. Chen et al. / Computer-Aided Design 44 (2012) 554–574 569
Fig. 22. Search samples of the assembly retrieval system (skeleton query).
that the assembling graph structures of search results contain the
query structure as a segment which is shown in Fig. 23(c). (Query
engine is a two-cylinder design, while the retrieved one is an eight-
cylinder design.)

The geometric information is useful for reordering the search
results. This can help users find the models they want much more
quickly in the result. For example, the 3rd result and the 4th result
in the engine sample have identical topology structures, but the
layout of the 4th result is V -style and hence it is less similar to
the query. Moreover, the 2nd result and the 3rd result in the car
sample also have identical topology structures; however the shape
of the mainframe part in the 2nd result is more similar to the
corresponding one in the car skeleton query so that it is put before
the 3rd one.

570 X. Chen et al. / Computer-Aided Design 44 (2012) 554–574
Fig. 23. Details of the search results.
0.00

0.20

0.40

0.60

0.80

1.00

Six Human Bike Car Milling Engine Agms

P
re

ci
si

on
 @

 1
0

Fig. 24. Precision of top 10 assembly retrieval results.

As we can see, Figs. 21 and 22 show two different ways for
assembly retrieval. Compared to the skeleton based query, the
kinematics-graph query is simpler and more convenient to be
sketched out, but the similarity result is coarser and less-
discriminative. Hence it can be a good way for quick search.
On the other hand, the skeleton based query provides more
comprehensive information, and the result is subtler. Therefore,
it can help users locate the models they want more precisely and
quickly in a large database. Besides these two ways, there could
be many other flexible means for searching assemblies which are
applicable to specific situations and needs, and the corresponding
implementation will not be hard since the multilevel assembly
descriptor exhibits the necessary abilities.

7.3. Performance evaluation

In order to evaluate the proposed assembly retrieval methods,
two graduate students are invited from Mechanical Engineering
Department. They are asked to label all the assemblies in the
library either as relevant or irrelevant to the queries. Discussion
is permitted between the two subjects to achieve agreement, and
the final labeled data are used as the ground truth for evaluations
below. The same queries shown in Figs. 21 and 22 are used here. In
these two figures, some retrieved results are annotated with little
red crosses on the bottom-right, which indicate the irrelevance to
the corresponding queries.

Fig. 24 gives the precision of top 10 search results for each
query. In the case that the retrieved results are less than 10, the
number of retrieved results is used in the calculation instead. By
looking into the details of Fig. 24, it is clear that every search
gets very good accuracy (>0.85) except for the queries ‘‘Bike’’
and ‘‘Agms’’. The precision of these two queries are 0.67 and
0.60 respectively, which are barely satisfactory. However, after
an analysis of the corresponding queries, we find that the result
is largely due to the fact that the amount of all relevant models
for these two queries is less than 10. This means that the top 10
precisions for these queries are actually the final precisions. In that
way, we think these precisions are fairly acceptable.

In Fig. 25, the precision–recall graph is given. Each query’s
interpolated precision–recall curve is shown with thin lines in
0.00

0.20

0.40

0.60

0.80

1.00

P
re

ci
si

on

Six

Human

Bike

Car

Milling

Engine

Agms

Average

Recall

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Fig. 25. Precision/recall graph of assembly retrieval results.

different colors, and the sampled precision and recall values are
also plotted as different point labels. Besides that, the thickest
green curve in the figure is the averaged 11-point interpolated
precision–recall curve of all 7 queries. It could be seen that
the main part (recall <0.8) of the average curve starting from
the top-left point is nearly horizontal, which means that the
assembly search maintains the precision at a relatively high value
when the number of recalled relevant models increases. This can
actually be foreseeable since the multilevel assembly descriptor
and the matching algorithm used in the work utilize information
possessing high distinguishability. On the other hand, the average
curve near the tail begins to fall (when the recall value is bigger
than 0.8), until arriving at the final value of precision around 0.3.
Here the calculation style of the average precision–recall curve
is the main reason. As could be noticed, some precision–recall
curves cannot get to the points where the recall value is 1, which
indicates not all of the relevant models returned in these searches.
Accordingly, value 0 (precision) is used instead in the average
calculation at the above points, hence the decrease of the average
precision. By checking the details of the relevant models which are
not retrieved, we find that they are more or less in an abnormal
statuswith regard to the organization of assembly structures (since
most of the models are downloaded from public repositories in
the internet, we cannot control this irrationality). For example, an
upper rod and a piston are combined into a sub-assembly in an
enginemodel,which is not thewaypresent in other enginemodels.
However, this may imply a problem that some models could have
comprehensions in other than the most common ways. Therefore,
how to resolve these potential differences in essentially identical
models may be an interesting topic in assembly retrieval.

The ranking orders in the search results are determined by
the calculated similarities. Actually, the absolute values of the
similarities are not important, but the relative orders between
different models are crucial. Therefore, the two subjects are also
asked to adjust the orders of all the search results shown in Figs. 21
and 22 for order evaluation. Then the original orders set by our
system are compared with the orders corrected by the subjects.
Fig. 26 shows the result of the comparison in the form of a relative
order matrix similar to the similarity matrix defined in [49]. In the

X. Chen et al. / Computer-Aided Design 44 (2012) 554–574 571
Fig. 26. Relative order matrix for assembly retrieval results.

similarity matrix, the color of each pixel indicates the similarity
between twomodels corresponding to the rowand column indices,
whereas, in the relative order matrix shown here, the color of each
pixel indicates whether the relative order between two models
given by our system is correct or not (black is true, gray is false,
white is undefined since the two models are not retrieved by the
same query). It could be seen that there are generally much fewer
gray pixels than black ones in the matrix diagonal, which indicates
that the ranking orders given by the system are in a reasonable
scope. Moreover, it could be also noticed that the number of gray
pixels belonging to the ‘‘car’’ query is obviously greater than that
to the other queries. Here the reason behind is mainly related to
the number of search results. When abundant models are present,
even a professional designer may not feel it easy to determine a
comprehensive order among them. Therefore, the relatively higher
rate of wrong orders in the ‘‘car’’ block is not a totally unexpected
result.

Generally speaking, the absence of a good benchmark dataset is
still a main challenge for all related research on assembly retrieval,
especially for the evaluations of methods. We will continue to
explore the possibility of establishing a more reasonable and
comprehensive dataset for evaluation based on the current library
we use.

7.4. Efficiency

The statistics about the running time of the assembly retrieval
system is shown in Table 2. The test is executed on a PC with
Table 2
Running time statistics of assembly retrieval.

Query Search time (in milliseconds)
Without indexing With indexing

Six-DOF graph 39.87 4.46
Human-like graph 47.51 4.95
Bike skeleton 41.05 5.40
Car skeleton 164.23 12.72
Milling machine skeleton 56.39 3.55
Engine skeleton 26.68 8.80
Agms skeleton 105.31 3.01

Intel Core2 Quad CPU Q9400 (2.66 GHz) and 4 GB memories. Each
value in the table is the average time of 100 running under the
same configuration. It could be seen that the performance is quite
pleasant, while the most time-consuming search (car skeleton
query) is 164.23 ms without indexing mechanism. However, the
search time could still become high if the size of the library
becomes larger, e.g. 106 assemblies. In this case, the indexing
mechanism will play an important role for accelerating the
assembly retrieval, since the search timewith indexing in the table
shows obvious advancement compared to the search timewithout
indexing.

As regards the details of Table 2, there is an interesting
phenomenon which merits our attention. Specifically, while the
search for the ‘‘engine skeleton’’ query takes 26.68 ms without
indexing and 8.8mswith indexing, the search for ‘‘millingmachine
skeleton’’ query, which takes 56.39 ms without indexing (i.e. 2
times longer as compared to engine skeleton), takes only 3.55 ms
with indexing (i.e. less than 1/2 times as compared to engine
skeleton). In our assembly retrieval method, the most time-
consuming step is the hierarchical graph matching. Hence, the
number of graph matching operations and the specific structures
involved in each of themactually determine thewhole search time.
In case of the ‘‘milling machine skeleton’’ query, the assembling-
graph structure has 3 nodes and 2 edges, each edge representing
a 1-translational DOF between the two nodes connected to it
(Fig. 27). This structure is quite ordinary so thatmanymodels in our
assembly library can contain it. Moreover, a model containing this
structure can even have it at many different places, which means
that there will be a lot of match candidates for graph matching
(costing more time). On the other hand, the ‘‘engine skeleton’’
has a relatively more complex structure (Fig. 2) as compared to
the ‘‘milling machine skeleton’’, which can be contained by much
fewer models (several times difference in the statistical data) in
our assembly library. These facts can thus explain the reason why
the search for ‘‘milling machine skeleton’’ costs more time than
the search for ‘‘engine skeleton’’. However, when the indexing
mechanisms presented in the work are utilized, things become
quite different. As is known, the models involved in the graph
matching are those which cannot be filtered out by the indexing
mechanisms. Since the sub-graph indexingmechanism in thework
only deals with the cycle structures currently, the graph structures
containing the non-cycle query structure as sub-graphs will all be
discarded in the filtering process. This in turn greatly reduces the
(a) Milling machine skeleton. (b) Assembling-graph structure.

Fig. 27. Milling machine skeleton query and its assembling-graph structure.

572 X. Chen et al. / Computer-Aided Design 44 (2012) 554–574
Table 3
Types of translational freedom (L for line, P for plane, v for vector and p for point).

Type Description Geometrical element

T0 No translation allowed ∅
T1 Translation in one direction L(v0, p0)
T2 Translation in a plane P(n0, p)
T3 Free translation L(v, p)

Table 4
Types of rotational freedom.

Type Description Geometrical element

R0 No rotation allowed ∅
R1 Rotation about a given axis L(v0, p0)
R1-a Rotation about any axis in a given direction L(v0, p)
Rf Rotation about any axis through a given

point
L(v, p0)

Rf-a Rotation about any axis L(v, p)

number of models which need further graph matching in search
of the ‘‘milling machine skeleton’’, and hence diminishes its search
time to less than half of that for the ‘‘engine skeleton’’. In fact, the
current sub-graph indexing mechanism as discussed above may
generate some false negatives which could potentially be matched
to the query. Therefore, it is very important to find more useful
structural patterns in assembly models besides the cycle structure
used in our sub-graph indexing mechanism, which will be our
future work.

8. Conclusion and future works

In this paper, a flexible and effective approach is presented for
searching assemblies in the product library. The multilevel assem-
bly descriptor gathers different levels of information important
for distinguishing assemblies. The hierarchical assembly structure
and the semantic assembly interface canwell preserve the implicit
high-level design semantics hidden in assemblymodels.Moreover,
the layout information and the shape information are also kept
for better discriminability. Based on the multilevel assembly de-
scriptor, a corresponding matching algorithm is also designed to
compare different assemblies and calculate the similarity between
them. In addition, an efficient indexing mechanism is presented to
accelerate the assembly retrieval, which can also support partial
retrieval to some extent. The whole assembly retrieval approach
is a flexible and unified framework: users can provide different
queries as theywish, such as the rough query and the partial query,
and according to different queries, appropriate information will be
used for the calculations in the search. Finally, a prototype sys-
tem is presented to verify our assembly retrieval approach, which
shows good performance and efficiency. Meanwhile, an applica-
tion of the assembly retrieval approach to top-down assembly de-
sign demonstrates a promising future for it.

In the future, several things could be done to improve the
assembly retrieval approach presented in this paper:
(a) The search samples given in the implementation section show

that there are still some occasional models unwanted by the
queries. To further improve the precision of assembly retrieval,
the similarity calculation should be carefully modified, and
some additional semantic information such as the function and
loads could be involved.

(b) The current indexing mechanism does not handle all the
subparts of an assembly, hence extra efforts should still be put
into finding the useful patterns of important and meaningful
subparts in assembly models to help implementing better
indexing mechanisms.

(c) Reasonable identification of the interface-parts should be
addressed to minimize their negative impact on matching.

Acknowledgment

The authors are very grateful to the financial support from the
National Science Foundation of China (No. 61173125).

Appendix

See Tables 3–8.
Table 5
Mapping between typical geometric-matings and types of freedom.

Mating Geometry Translational element Rotational element Types of freedom

Coincident

Point–point ∅ L(v, p0) (T0, Rf)
Line–line L(v0, p0) L(v0, p0) (T1, R1)
Plane–plane P(n0, p) L(n0, p) (T2, R1-a)
Point–line L(v0, p0) L(v, p0) (T1, Rf)
Point–plane P(n0, p0) L(v, p0) (T2, Rf)
Line–plane P(n0, p0) L(v0, p0), L(n0, p) (T2, (R1, R1-a))

Concentric Cylinder–cylinder L(v0, p0) L(v0, p0) (T1, R1)
Cone–cone ∅ L(v0, p0) (T0, R1)

Distance

Point–point ∅ L(v, p0), L(v, p0) (T0, (Rf, Rf))
Point–line L(v0, p0) L(v0, p0), L(v, p0) (T1, (R1, Rf))

P(n0, p) L(v0, p0),L(v0, p0) (T2, (R1, R1))
Line–line L(v0, p0) L(v0, p0) (T1, R1)
Point–plane P(n0, p) L(n0, p), L(v, p0) (T2, (R1-a, Rf))
Plane–plane P(n0, p) L(n0, p) (T2, R1-a)
Line–plane P(n0, p) L(v0, p0), L(n0, p) (T2, (R1, R1-a))

Tangent
Plane–cylinder P(n0, p) L(v0, p0), L(n0, p) (T2, (R1, R1-a))
Cylinder–cylinder L(v0, p0) L(v0, p0), L(v0, p0) (T1, (R1, R1))
Plane–sphere P(n0, p) L(n0, p), L(v, p0) (T2, (R1-a, Rf))

Angle
Line–line L(v, p0) L(v0, p), L(v0, p) (T3, (R1-a, R1-a))
Line–plane L(v, p0) L(v0, p), L(n0, p) (T3, (R1-a, R1-a))
Plane–plane L(v, p0) L(n0, p), L(n0, p) (T3, (R1-a, R1-a))

Parallel
Line–line L(v, p0) L(v0, p) (T3, R1-a)
Line–plane L(v, p0) L(v0, p), L(n0, p) (T3, (R1-a, R1-a))
Plane–plane L(v, p0) L(n0, p) (T3, R1-a)

Perpendicular
Line–line L(v, p0) L(v0, p), L(v0, p) (T3, (R1-a, R1-a))
Line–plane L(v, p0) L(n0, p) (T3, R1-a)
Plane–plane L(v, p0) L(n0, p), L(n0, p) (T3, (R1-a, R1-a))

X. Chen et al. / Computer-Aided Design 44 (2012) 554–574 573
Table 6
Mapping between typical kinematic-pairs and types of freedom.

Kinematic-pairs Translational element Rotational element Types of freedom

Planar pair P(n0, p) L(n0, p) (T2, R1-a)
Prismatic pair L(v0, p0) ∅ (T1, R0)
Cylindrical pair L(v0, p0) L(v0, p0) (T1, R1)
Revolute pair ∅ L(v0, p0) (T0, R1)
Spherical pair ∅ L(v, p0) (T0, Rf)
Rigid pair ∅ ∅ (T0, R0)
Table 7
Reducing rules of translational freedom.

Type 1 Type 2 Reducing result of translational freedom

T0 Tx T0
T3 Tx Tx
T1 T1 If the directions are the same, or exactly opposite, result is T1. Else, result is T0.
T1 T2 If the T1 direction lies on the T2 plane, result is T1. Else, result is T0.
T2 T2 If the plane normals are the same, result is T2 Else, result is T1, where the T1 direction is given by the intersection of the two planes.
Table 8
Reducing rules of rotational freedom.

Type 1 Type 2 Reducing result of rotational freedom

R0 Rx R0
Rf-a Rx Rx
R1 R1 If the two axes have the same direction, and if the origin point of one axis lies on the other axis, then the result is R1. Else, the result is R0.
R1 R1-a If the two axes have the same direction, then the result is R1. Else, the result is R0.
R1 Rf If the Rf origin is on the R1 axis, then the result is R1. Else, the result is R0.
R1-a R1-a If the two axes have the same direction, then the result is R1-a. Else, the result is R0.
R1-a Rf R1
Rf Rf If the two origin points coincide, the result is Rf. Else the result is R1, with the axis joining the two origin points.
References

[1] Llewelyn AI. Review of CAD/CAM. Computer-Aided Design 1989;21:297–302.
[2] Gunn T. The mechanization of design and manufacturing. Scientific American

1982;247:114–30.
[3] Deshmukh AS, Banerjee AG, Gupta SK, Sriram RD. Content-based assembly

search: a step towards assembly reuse. Computer-Aided Design 2008;40:
244–61.

[4] Smeulders AWM, Worring M, Santini S, Gupta A, Jain R. Content-based image
retrieval at the end of the early years. IEEE Transactions on Pattern Analysis
and Machine Intelligence 2000;22:1349–80.

[5] Tangelder J, VeltkampR. A survey of content based3D shape retrievalmethods.
Multimedia Tools and Applications 2008;39:441–71.

[6] Iyer N, Jayanti S, Lou K, Kalyanaraman Y, Ramani K. Three-dimensional shape
searching: state-of-the-art review and future trends. Computer-Aided Design
2005;37:509–30.

[7] You CF, Tsai YL. 3D solid model retrieval for engineering reuse based on local
feature correspondence. The International Journal of AdvancedManufacturing
Technology 2010;46:649–61.

[8] Chang S, Perry B, Rosenfeld A. Content-based multimedia information access.
Kluwer Press; 1999.

[9] Rui Y, Huang T, Chang S. Image retrieval: current techniques, promising
directions, and open issues. Journal of Visual Communication and Image
Representation 1999;10:39–62.

[10] Park J, Um B. A new approach to similarity retrieval of 2-D graphic objects
based on dominant shapes. Pattern Recognition Letters 1999;20:591–616.

[11] Leung W, Chen T. User-independent retrieval of free-form hand-drawn
sketches. In: IEEE international conference on acoustics speech and signal
processing. 2002.

[12] LeungW, Chen T. Hierarchical matching for retrieval of hand-drawn sketches.
In: Proceedings of the IEEE international conference on multimedia and
exposition. 2002.

[13] Fonseca M, Jorge J. Towards content-based retrieval of technical drawings
through high-dimensional indexing. Computers & Graphics 2003;27:61–9.

[14] Pu J, Ramani K. On visual similarity based 2D drawing retrieval. Computer-
Aided Design 2006;38:249–59.

[15] Hou S, Ramani K. Classifier combination for sketch-based 3D part retrieval.
Computers & Graphics 2007;31:598–609.

[16] Hou S, Ramani K. Structure-oriented contour representation andmatching for
engineering shapes. Computer-Aided Design 2008;40:94–108.

[17] Fonseca M, Ferreira A, Jorge J. Sketch-based retrieval of complex drawings
using hierarchical topology and geometry. Computer-Aided Design 2009.

[18] Cardone A, Gupta S, Karnik M. A survey of shape similarity assessment
algorithms for product design and manufacturing applications. Journal of
Computing and Information Science in Engineering 2003;3:109.

[19] Bimbo A, Pala P. Content-based retrieval of 3D models. ACM Transactions on
Multimedia Computing, Communications, and Applications 2006;2:20–43.
[20] Cardone A, Gupta SK, Deshmukh A, Karnik M. Machining feature-based
similarity assessment algorithms for prismatic machined parts. Computer-
Aided Design 2006;38:954–72.

[21] Funkhouser T, Shilane P. Partial matching of 3D shapes with priority-driven
search. In: Proceedings of the fourth eurographics symposium on geometry
processing. Eurographics Association; 2006. p. 142.

[22] Gao W, Gao SM, Liu YS, Bai J, Hu BK. Multiresolutional similarity assessment
and retrieval of solid models based on DBMS. Computer-Aided Design 2006;
38:985–1001.

[23] Kuo C, Cheng S. 3Dmodel retrieval using principal plane analysis and dynamic
programming. Pattern Recognition 2007;40:742–55.

[24] Li M, Zhang YF, Fuh JYH, Qiu ZM. Toward effective mechanical design
reuse: CAD model retrieval based on general and partial shapes. Journal of
Mechanical Design 2009;131:8.

[25] Bai J, Gao S, TangW, Liu Y, Guo S. Design reuse oriented partial retrieval of CAD
models. Computer-Aided Design 2010.

[26] Hu B, Liu Y, Gao S, Sun R, Xian C. Parallel relevance feedback for 3D model
retrieval based on fast weighted-center particle swarm optimization. Pattern
Recognition 2010.

[27] Aamodt A, Plaza E. Case-based reasoning: foundational issues, methodological
variations, and system approaches. AI Communications 1994;7:39–59.

[28] Wood W. Case-based conceptual design information server for concurrent
engineering. Computer-Aided Design 1996;28:361–9.

[29] Kim G. Case-based design for assembly. Computer-Aided Design 1997;29:
497–506.

[30] Hu L, Xu C, Wang Y, Liu G. Mechanical product case representation and case
retrieval based on object-oriented technique. Journal of Nanjing University of
Science and Technology (Natural Science) 2009.

[31] Wu SF, Wang ZY, Pang LL. Rapid design platform for mechanical products
based on CBR. Advanced Materials Research 2010;102:262–6.

[32] Chao YS, Liu HJ. Case retrieval in body-in-white parts based on similarities of
welding and assembly process. Computer Integrated Manufacturing Systems
2011;17:30–6.

[33] Maher ML, Gomez de Silva Garza A. Case-based reasoning in design. IEEE
Expert 1997;12:34–41.

[34] Goel A, Craw S. Design, innovation and case-based reasoning. The Knowledge
Engineering Review 2006;20:271–6.

[35] Regli W, Cicirello V. Managing digital libraries for computer-aided design.
Computer Aided Design 2000;32:119–32.

[36] Deshmukh A, Gupta S, Karnik M, Sriram R. A system for performing content-
based searches on a database ofmechanical assemblies. In: ASME international
mechanical engineering congress & exposition; 2005.

[37] Gupta SK, Cardone A, Deshmukh A. Content-based search techniques for
searching CAD databases. Computer-Aided Design and Applications 2006;3:
811–9.

[38] Ullmann J. An algorithm for subgraph isomorphism. Journal of the ACM 1976;
23:31–42.

574 X. Chen et al. / Computer-Aided Design 44 (2012) 554–574
[39] Gaag A, Kohn A, Lindemann U. Function-based solution retrieval and semantic
search in mechanical engineering; 2009.

[40] Chakrabarty S, Chougule R, Lesperance RM. Ontology-guided knowledge
retrieval in an automobile assembly environment. The International Journal
of Advanced Manufacturing Technology 2009;44:1237–49.

[41] Eriksen EP, Moffitt ME, Warren TM. Retrieval of bottom hole assembly during
casing while drilling operations. In: Google patents; 2010.

[42] Kim BC, Mun D, Han S. Retrieval of CAD model data based on Web
Services for collaborative product development in a distributed environment.
The International Journal of Advanced Manufacturing Technology 2010;50:
1085–99.

[43] Lee K, Gossard DC. A hierarchical data structure for representing assemblies:
part 1. Computer-Aided Design 1985;17:15–9.

[44] Mäntylä M. A modeling system for top-down design of assembled products.
IBM Journal of Research and Development 1990;34:636–59.

[45] Shah J, Mäntylä M. Parametric and feature-based CAD/CAM: concepts,
techniques, and applications. Wiley-Interscience; 1995.

[46] Ambrósio JAC, Eberhard P. Advanced design of mechanical systems: from
analysis to optimization. Springer Verlag; 2009.

[47] MolianMS. Storage and retrieval of description ofmechanisms andmechanical
devices according to kinematic type. Journal of Mechanisms 1969;4:311–23.

[48] Chiou SJ, Sridhar K. Automated conceptual design of mechanisms. Mechanism
and Machine Theory 1999;34:467–95.

[49] Osada R, Funkhouser T, Chazelle B, Dobkin D. Shape distributions. ACM
Transactions on Graphics 2002;21:807–32.

[50] Ip C, Lapadat D, Sieger L, Regli W. Using shape distributions to compare solid
models. In: Proceedings of the seventh ACMsymposiumon solidmodeling and
applications. ACM; 2002. p. 273–80.
[51] Xiaoning G. Technical report: a kinematics analysis and simulation system for
the complex virtual prototyping under CAVE; 2005.

[52] Turner JU, Subramaniam S, Gupta S. Constraint representation and reduction
in assembly modeling and analysis. IEEE Transactions on Robotics and
Automation 1992;8:741–50.

[53] Cordella L, Foggia P, Sansone C, VentoM. A (sub) graph isomorphism algorithm
for matching large graphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence 2004;1367–72.

[54] Conte D, Foggia P, Sansone C, Vento M. Thirty years of graph matching in
pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence 2004;18:265–98.

[55] Chung FRK. Spectral graph theory. Amer. Mathematical Society; 1997.
[56] Gori M, Maggini M, Sarti L. Exact and approximate graph matching using

randomwalks. IEEE Transactions on Pattern Analysis andMachine Intelligence
2005;27:1100–11.

[57] Böhm C, Berchtold S, Keim D. Searching in high-dimensional spaces: index
structures for improving the performance of multimedia databases. ACM
Computing Surveys 2001;33:322–73.

[58] Horton JD. A polynomial-time algorithm to find the shortest cycle basis of a
graph. SIAM Journal on Computing 1987;16:358.

[59] Johnson DB. Finding all the elementary circuits of a directed graph. SIAM
Journal on Computing 1975;4:77–84.

[60] http://amalfi.dis.unina.it/graph/.
[61] http://www.3dcontentcentral.com.
[62] Chen X, Gao S, Yang Y, Zhang S. Multi-level assembly model for top-

down design of mechanical products. Computer-Aided Design 2011;
doi:10.1016/j.cad.2010.12.008.

http://amalfi.dis.unina.it/graph/
http://www.3dcontentcentral.com
http://dx.doi.org/doi:10.1016/j.cad.2010.12.008

	A flexible assembly retrieval approach for model reuse
	Introduction
	Related works
	Overview of the flexible assembly retrieval approach
	A multilevel assembly descriptor
	Topological structure
	Assembling semantics
	Semantic assembly interface
	Multiple interpretations

	Geometrical information
	Other useful information
	Generation of multilevel assembly descriptors

	Assembly matching
	Primary comparing
	Secondary refining
	Assembling similarity
	Geometrical similarity

	Assembly indexing and filtering
	Indexing
	Filtering

	Implementation
	System
	Search samples
	Performance evaluation
	Efficiency

	Conclusion and future works
	Acknowledgment
	Appendix
	References

