
Automatic Synchronization of a FeatureModel with Direct Editing based on
CellularModel

Abstract

As the de-facto standard in modern CAD systems, feature-based modeling is widely used for parametric design. Direct modeling,
in contrast, is an emerging technology which allows users promptly edit B-rep models without involving the feature model, i.e.
the history tree. The two modeling technologies have their own advantages but are hard to communicate. To exert the powers of
both technologies in a single design session and enable the interoperability between them, we propose a method that automatically
converts direct modeling operations into history tree modifications, for synchronizing the feature model. We sequentially adopt
three synchronization strategies - feature definition modification, feature order change and feature add/remove - to preserve design
semantics of a feature model as much as possible. With a series of experiments, we demonstrate that our synchronization method
can successfully fuse direct modeling and feature-based modeling in a natural and efficient way.
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1. Introduction

In the last two decades, parametric and feature-based mod-
eling [1] played a great role in computer-aided design and
brought huge economic benefits to manufacturing indus-
tries. Rather than low-level editing, the technology enables
a designer to create or edit high-level design elements, i.e.
“feature”, which possesses rich engineering/manufacturing
semantics. However, feature-based modeling has its own
drawbacks [2], e.g. high complexity, order dependency
and predefinition of changeable parameters, which can
hamper the modeling flexibility. Recently, direct mod-
eling technology is rapidly developing and getting used
in commercial CAD systems like SpaceClaim [3], NX [4]
and Creo [5]. Direct modeling is friendly to normal users,
as one can easily manipulate geometric elements to edit
a native model, without understanding the complex or
even tricky design semantics in feature history tree. Com-
pared with feature-based modeling, direct modeling is a
lightweight editing tool, and behaves more efficient and
flexible. Early/conceptual design or personal customiza-
tion/fabrication can all benefit from it. While the above
two technologies have their own merits, they can be com-
plementary to each other. They are often used in different
design phases or preferred by experts from different do-
mains. Actually, the interoperability and communication
between the two modeling methods is crucial to design
success, as designers need to transfer design knowledge
between different design phases, and domain experts need

to share idea or edit models during collaboration. Unfor-
tunately, this kind of interoperability is still hard and rare,
which severely hinders design innovation or even fails a
project.

While feature-based modeling uses feature model to
record the parametric design process, direct modeling op-
eration is an immediate event that makes a change to
geometric model (B-rep). Once users edit a parametric
model through direct modeling, the underlying B-rep is
modified without involvement of the history tree. To keep
the parametric information up-to-date and valid, the fea-
ture model should be synchronized accordingly, and the
new feature model should be able to faithfully regenerate
the modified geometric model. This is the key to maintain
consistency and enable interoperability between the two
modeling technologies.

In this paper, we present an automatic method to
smoothly convert direct modeling operations into history
tree modifications. Bases on feature representation har-
nessed on cellular model [6], we evaluate the influence of
geometric editing on feature definitions and update the
history tree. It must be emphasized that the history tree
modification is not unique, as there are many possible
ways to update the history tree for regenerating the latest
geometric model. We thus design three synchronization
strategies following the principle of least astonishment: a)
modify feature definitions; b) adjust feature orders in his-
tory tree; and c) add/remove specific features. We executed
them sequentially to ensure a successful synchronization,



while introducing least modifications to the original design
history.

Contribution In summary, our work makes following
contributions:

•We propose an automatic synchronization method to en-
sure consistency between the geometric model under di-
rect editing and the feature definitions in history tree,
and thus form a seamless bridge between direct model-
ing and feature-based modeling.

•We design three synchronization strategies to update the
history tree, with a minimum deviation from the original
design semantics.

•We leverage cellular model to efficiently detect geometric
consistencies and modify feature information.

2. Related Work

Model Conversion In solid modeling, boundary repre-
sentation (B-rep) and constructive solid geometry (CSG)
are two dominating methods for representing shapes. The
conversion technology between B-rep and CSG is of sig-
nificance for developing a dual-representation modeling
system. Requicha and Voelcker [7] presented the boundary
evaluation and merging algorithms which described set
membership classification and neighborhood manipulation
in detail. Through the work, the problem of computing B-
rep from CSG representation can be well understood. The
inverse problem was systematically studied by Shapiro et
al. [8–10]. They mainly considered two aspects of conver-
sion from B-rep to CSG, i.e. the construction of separating
half-spaces and the optimization of the resulting CSG.

The smooth exchange of part models among different
vendor systems has practical importance. Kim et al. [11]
put forward a foundation for the standardized intersys-
tem exchange of parametric models. Several researches
dedicated to exchanging parametric design information
between heterogeneous CAD systems, such as macro-
parametric approach [12], universal product representa-
tion (UPR) architecture [13], and neutral modeling com-
mands [14].

Bronsvoort et al. [15,16] presented a multiple-view fea-
ture technology to convert various data between different
design phases, which enabled an integral environment for
product development.

In our work, we focus on smart conversion from direct
modeling operations to feature model modifications, facili-
tating users with powers and flexibilities of both modeling
technologies.

Feature-based Modeling Feature-based modeling,
employing features as the elementary units to construct
solid models, mainly includes two categories of methods:
one is feature-based design, e.g. machine feature-based de-
composition [17] and design feature based synthesis [18,19];
the other is feature recognition [20–22] which can be clas-

sified into volumetric decomposition, hint-based geometric
reasoning and graph-based algorithms.

Direct Modeling Different from the features, param-
eters and constraints involved in feature-based modeling,
the only input of direct modeling is a B-rep. Users can di-
rectly drag or rotate the geometric elements to edit the
shapes. The efficiency, flexibility and simplicity drew great
attentions from the industry. For more information, please
refer to [23–26].

Cellular Model Cellular model was developed based
on the non-manifold boundary representation, of which the
boundary evaluation and boolean operations were reported
in [27,28]. Bidarra et al. [6] first proposed to manage fea-
ture information with cellular model. This representation
brought efficient boundary evaluation for feature model-
ing [29]. After that, extensive studies on application of cel-
lular model were conducted, such as semantic feature mod-
eling [2], multiple-view feature modeling [15], feature model
visualization [30], progressive solid models generation [31]
and feature-based multiresolution modeling [32]. In this pa-
per, we adopt cellular model for detecting geometric con-
sistencies and manipulating features.

3. Overview

Our synchronization method takes as input (i) a paramet-
ric model M , (ii) a direct modeling operation d that mod-
ifies the underlying geometries of M . In particular, M is
defined as {F,O,G}, in which F = {F0, F1, · · · , Fn} is the
sequence of features, O = {⊗1,⊗2, · · · ,⊗n} is the sequence
of boolean operations “+, − and ∩” applied on features,
and G is the geometric model computed by:

G = F0 ⊗1 F1 ⊗2 F2 · · · ⊗n Fn.

After the direct modeling operation (Fig. 1(b)), we have a
new geometric model G′ = d(G).

Our synchronization method computes a new feature se-
quence F ′ and corresponding boolean operation sequence
O′ such that the geometric model computed from F ′ is ex-
actly the same as the edit result G′:

F ′
0 ⊗′

1 F
′
1 ⊗′

2 F
′
2 · · · ⊗′

m F ′
m = G′.

We note that there is usually no unique F ′ satisfying
the above constraint. By following the principle of least
modification to the original feature model, we design three
synchronization strategies:

1. Modification of feature definitions Modify the pa-
rameters and sketch of the original features.

2. Adjustment of feature orders in history tree Adjust
the positions of specific features in design history
while maintaining the inherent feature-dependencies.

3. Addition and deletion of features Add new features
into history tree or delete useless features from it,
which ensures the success of synchronization.
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Fig. 1. Overview of synchronization method: (a) the original feature model; (b) the direct editing; (c) the synchronization process.

As shown in Fig. 1(c), the three strategies are sequen-
tially applied to compute a valid F ′ that preserves the de-
sign semantics as much as possible.

In this work, we only consider extrusion feature, which
is mostly used in practical, to simplify the synchroniza-
tion problem. However, the main process is applicable to
other kinds of features, e.g. rotations, with specific sub-
algorithms carefully designed. We also assume that inter-
feature geometric constraints do not exist in the input
model, which is left as the future work.

4. Algorithm

Algorithm 1 lists the main pipeline of our synchronization
processing. The three synchronization strategies are exe-
cuted in order, until the underlying geometry of the new fea-
ture model is consistent with the direct editing result. Be-
fore giving details of each synchronization strategy, we first
introduce the cellular-based feature model briefly, which is
essential for checking geometric consistency and manipu-

Algorithm 1 Feature Model Synchronization

1: procedure Synchronization(M , G′)
2: CM ← ConstructCellularModel(M)
3: CM .AddFeature(G′)
4: if IsConsistent(CM) then return

5: ModifyFeatureDefinitions(CM)
6: if IsConsistent(CM) then return

7: AdjustFeatureOrders(CM)
8: if IsConsistent(CM) then return

9: AddDeleteFeatures(CM)
10: return

lating feature information.

4.1. Cellular-Based Feature Model

Representation Cellular model is a non-manifold geo-
metric representation [33]. It consists of a connected set of
volumetric quasi-disjoint cells. As shown in Fig. 2(a), cells
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Fig. 2. Cellular model: (a) the representation of cellular topology; (b)

the non-regularized Boolean unite operation; (c) the cellular-based

feature model.

represent 3D (volumetric) regions closed by cell faces. Two
cells can be separated by a double-sided internal face, with
each side corresponding to a cell. Single-sided faces lie on
the shape boundary. Cellular model also supports Boolean
unite/intersect/subtract operations as B-rep model but are
non-regularized version. As shown in Fig. 2(b), when non-
regularized Boolean unite operation is performed on two
cellular models, the overlapping region is split into a new
cell.

Bidarra et al. [6] proposed a feature representation based
on cellular model. As shown in Fig. 2(c), they associate an
owner list to each cell storing what features the cell belongs
to, and give each cell a nature attribute specifying whether
the region of the cell is additive or subtractive, i.e. adding or
removing material to the volume. A face is on the boundary
of the feature model if its two sides have opposite nature.

Manipulation and Construction The cellular-based
feature model supports feature addition, feature deletion,
and feature modification operations.

When inserting a new feature, the model is updated as
follows:

1. Instantiate the new feature as a cellular model with
only one cell.

2. Perform a non-regularized Boolean union between the
new cellular model and the original cellular model.
Whenever two cells undergo overlapping and result
in mutual decomposition, the new cell merges both
owner lists of the overlapping cells.

3. Sort the features in each cell’s owner list according
to feature orders in history tree, and set each cell’s
nature as same as the last feature in it’s owner list.

When deleting a feature, the model is updated as:

1. Remove all the references to the deleted feature from
each cell’s owner list.

2. Merge the adjacent cells with the same owner lists
and discard the cells whose owner lists are empty.

Feature modification operation is achieved by removing
an existing feature from the cellular model and then insert-
ing a new feature. As only Boolean unite operations are
used in cellular-based feature model, the boundary evalu-
ation result is independent of the operation orders. This
characteristic greatly reduces the time complexity of fea-
ture manipulations, since there is no need to re-execute the
whole history tree. Due to the fact that feature operations
are intensively used for synchronization, using the cellular-
based feature model can largely improve the efficiency.

We construct the cellular-based feature model as the first
step of the synchronization algorithm. During the construc-
tion, we insert the features of the history tree into a cellu-
lar model one-by-one, and update the feature information
accordingly.

4.2. Checking Geometric Model Consistencies

The synchronization succeeds if the underlying geometry
of cellular-based feature model is consistent with the direct
editing result. By regarding the direct modeling result as a
feature Fd and inserting it into the cellular model, we can
efficiently check the geometric consistencies by comparing
the current nature and the target nature of cells. The cur-
rent nature of each cell is evaluated without considering Fd

in the owner list, and the target nature of a cell is additive if
its owner features contain Fd, and vice versa. We call a cell
conflict if its current nature and target nature are oppo-
site. Therefore, the synchronization is success iff there exist
no conflict cells in the cellular model. The pseudo-code of
consistency checking algorithm is shown in Algorithm 2.

Algorithm 2 Consistency Checking

1: procedure IsConsistent(CM)
2: conflictCellList.clear()
3: for each cell ∈ CM do
4: realNature← cell.getRealNature(CM)
5: targetNature← cell.getTargetNature(CM)
6: if realNature 6= targetNature then
7: conflictCellList.push(cell)

8: return conflictCellList.isEmpty()

Fig. 3 shows a checking instance. In this algorithm, we
traverse the cellular model only once to detect conflict cells,
which is highly efficient. Without cellular-based feature
model, Boolean subtract operation has to be performed to
detect B-rep consistency, which is not only slow, but also
prone to fail.
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Fig. 3. Detection of conflict cells: (a) the direct editing result; (b)

underlying geometry of current synchronized feature model; (c) con-

flict cells in cellular model (red).

4.3. Modification of Feature Definitions

To modify design semantics of the feature model as lit-
tle as possible, we first try to synchronize through modi-
fying definitions of the original features. After identifying
the features affected by direct editing, we reconstruct these
extrusion features through modifications on sketch shape
and feature parameters. The detailed procedure is shown
in Algorithm 3.

Algorithm 3 Feature Definition Modification

1: procedure ModifyFeatureDefinitions(CM)
2: afs← IdentifyAffectedFeatures(CM)
3: Sort afs by the order of history tree
4: for each oldf ∈ afs do
5: sg ← DetermineSurfaceGroup(CM, oldf)
6: msg ←MaxSurfaceGroup(sg)
7: oldsg ← oldf.GetOldSurfaceGroup()
8: if msg 6= oldsg then
9: sketch← ConstructSketch(msg)

10: newf ← ReconstructExtrusion(sketch)
11: UpdateCellularModel(oldf, newf)

12: return

4.3.1. Identification of Affected Features
Since definition modifications are applied on the original
features, we first identify the features possibly affected by
direct modeling operation. During the direct editing pro-
cess, faces are dragged or rotated, which results in conflict
cells. According to the operated face and the conflict cells,
three kinds of affected features are identified: (i) Corre-
sponding features of the operated faces; (ii) The features
whose faces overlapped or intersected with the operated
faces; (iii) Features in the owner list of the conflict cells.

For the instance shown in Fig. 4, face f1 is moved, so we
identify the block feature as an affected feature. And by
checking the adjacent faces f2, f3 and f4 of operated face
f1, we also identify the through slot feature as an affected
feature.

4.3.2. Reconstruction of Extrusion Feature
We reconstruct the affected extrusion features based on
their surface group after direct editing, which is processed
according to their orders in the history tree. By modifying

f1

f3 f4

f2
base block

through slot

Fig. 4. Identification of affected features.

(a)

f1

f2

f4
f3

f5

f6

(b)

Fig. 5. Feature faces: (a) A slot feature (red) in the cellular model; (b)

the corresponding boundary feature faces and non-boundary feature

faces.

the sketch and the extrusion direction, we try to define the
maximum extrusion feature.

Surface Group Determination The surface in the ex-
trusion feature is constructed using the geometry equa-
tion of boundary feature face and non-boundary feature
face. Boundary feature faces are the primitive faces of the
feature at the boundary of the B-Rep model, and non-
boundary feature face are those not at the boundary. As
shown in Fig. 5, faces f1, f2 and f3 are boundary feature
faces, while f4, f5 and f6 are non-boundary feature faces.

The boundary feature faces are derived from those of
the affected features in the original model. For instance,
as shown in Fig. 6, the boundary feature faces of the slot
feature in Fig. 5 after direct editing are derived from the
corresponding boundary feature faces before direct editing.
When only parts of the feature faces sharing the same sur-
face are affected by direct modeling, we select the face group
with larger area as the boundary feature face. This accords
more with human visual perception. As shown in Fig. 6,
four blue boundary faces are moved while the red face is
not affected, and we choose the blue face group to form the
boundary feature face.

We determine non-boundary feature face using refer-
ence feature face, which is coplanar with other feature
faces in feature model. Fig. 7(a) shows a block feature cut
by a through slot feature, and the through slot feature is
bounded in the block feature. The three non-boundary
feature faces of the through slot feature f4, f5 and f6 are
coplanar with the three feature faces f ′

4, f ′
5 and f ′

6 of the
block feature respectively. To keep the original design se-
mantics, we preserve this type of coplanar relationship. In
particular, reference feature faces must satisfy two condi-
tions: (i) be coplanar and overlapped with current non-
boundary feature face; (ii) be constructed before current
feature.

Since the reference feature face is possibly changed dur-
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Fig. 6. Determination of boundary feature faces: (a) the correspond-
ing boundary feature faces (blue) of the slot feature in Fig. 5 before

direct modeling operation; (b) the corresponding boundary feature

faces (blue) of the slot feature in Fig. 5 after direct modeling oper-
ation; (c) partially affected boundary feature faces.
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f4’

f5’
f6’
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Fig. 7. Determination of non-boundary feature faces : (a) coplanar
reference feature face; (b) non-boundary feature face without refer-
ence feature face.

ing the process of direct modeling, non-boundary feature
face is determined after direct modeling. In the process of
synchronization, the affected features are sorted by the or-
der of history tree and reconstructed in turn, which guar-
antees the correctness of reference feature faces. The refer-
ence feature faces are efficiently determined using cellular
model. In case that non-boundary feature face cannot be
determined using reference feature face (Fig. 7(b)), we only
estimate a reasonable geometric equation. Two heuristic
rules are adopted:

1. Set the normal of feature face as unchanged, in order
to introduce least modification to the original model.

(a) (b)

Fig. 8. Maximum extrusion surface group: (a) original extrusion
feature; (b) direct editing result with the top face (red) rotated.

2. Put the feature face on either side of other feature
faces, forming the minimum positive volume of the
face group.

Maximum Extrusion Surface Group The surface
group with maximum extrusion possibility is recognized if
the feature is no longer a valid extrusion feature after direct
editing. As shown in Fig. 8, the top face of the prism is ro-
tated, resulting in a non-extrusion feature. In this case, the
maximum extrusion surface group that satisfies two condi-
tions is determined: (i) least number of faces are excluded;
(ii) the face group can be extruded along one direction.

Therefore, the maximum extrusion surface group are de-
termined as follows:

1. Collect a feature face set which consists of all the
boundary feature faces and non-boundary feature
faces with reference feature faces.

2. Enumerate all the possible extrusion directions for
the feature face set of step 1, and determine the cor-
responding extrusion face groups.

3. Select the face group with maximum number of faces
as the maximum extrusion face group.

In addition, all the feature faces not in the maximum ex-
trusion face group are regarded as the non-boundary fea-
ture face without corresponding reference feature face. In
Fig. 8, the maximum extrusion surface group contains all
but the rotated feature face.

Sketch Construction Based on the maximum extru-
sion surface group, the extrusion feature is constructed by
extruding the sketch along its perpendicular direction. As
the extrusion direction is perpendicular to the sketch plane
and the extrusion length is the distance from extrusion
source face to extrusion target face, the remaining problem
is how to construct the sketch. Based on the original topol-
ogy of side faces in the extrusion feature, we construct the
sketch as follows:

1. Project all the surfaces of side faces onto the sketch
plane and obtain curves of the surfaces.

2. Intersect the curves based on the original topology of
side faces and obtain the divided edges.

3. Connect the conjoint edges and complete the sketch.

As shown in Fig. 9, the blue faces in the top row are the
corresponding boundary faces of the features, and the red
wireframes are the constructed sketches. The red volumes
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Fig. 9. Construction of sketch in extrusion feature.

(a) (b) (c)

(d) (e)

Fig. 10. Repair of self-intersected sketch: (a) the original model which

includes a block feature cutting out a L-shaped feature; (b) the direct
editing result; (c) the boundary faces of L-shaped feature marked

in blue; (d) the self-intersected sketch; (e) reconstructed extrusion

feature after repair.

in the bottom row are the reconstructed extrusion features
based on the sketches.

When great changes are made during direct editing, the
original design semantic is largely modified, which may
cause self-intersected sketch. In this case, the sketch is re-
paired as follows:

1. Intersect non-adjacent edges each other, and split
each edge into two new edges respectively if there is
any intersection between two non-adjacent edges.

2. Repeat step 1 until there is no edge to split.
3. Find the wireframes that are not self-intersected.
4. Select the wireframe with the largest area as the

sketch.

Fig. 10 shows an example of the above method. Com-
bined the sketch of each extrusion feature with the extru-
sion direction and extrusion distance, we can reconstruct
the extrusion feature.

Model Updating Once an extrusion feature is recon-
structed, both of the feature model and its cellular-based
representation are updated. The affected feature in the fea-
ture model is updated only if its feature face geometric

1. base block
2. extrusion
3. blind hole

(a) (b)

1. base block
2. blind hole
3. extrusion

(c)

Fig. 11. Influence of feature orders on synchronization: (a) original
feature model and corresponding history tree; (b) the depth of the

blind hole is modified through direct modeling; (c) inconsistency

appears for specific feature orders (the extrusion feature ‘cut off’ the
blind hole).

equations are changed. The cellular representation is also
updated during this process, and the nature of each cell
turns to be opposite if the primitive of the feature is in-
verted.

When all of the affected features are reconstructed and
updated, geometric consistency checking is performed to
detect conflict cells. The synchronization is successful if
there is no conflict cell; otherwise we proceed to the next
synchronization step.

4.4. Adjustment of Feature Orders in History Tree

One reason of the geometric inconsistency after direct mod-
eling is the incorrect feature orders in history tree. The na-
ture of new cell introduced by direct modeling depends on
latest feature in its owner list. Depending on history tree,
the nature of the new intersection region may be different
from that of direct modeling result, see Fig. 11 as an ex-
ample. For successful synchronization, we first analyze the
dependency relationship of features, and then swap neces-
sary features to eliminate conflict cells.

4.4.1. Analysis of Feature Dependency Relationship
The dependency relationships between features reflect de-
sign semantics. Besides new intersections introduced by di-
rect editing, the natures of original intersection regions de-
pend on the related feature orders. Therefore, the depen-
dency relationships should be kept during the process of
feature order adjustment, otherwise new conflict cells may
appear in the synchronized model.

We use the feature dependency graph which is defined
as G = {V,E} to described the feature dependencies. V =
{v1, v2, . . . , vn} represents the vertices of graph. Each ver-
tex corresponds to a feature. And E = {e1, e2, . . . , en} rep-
resents the directed edges of graph. Feature v1 depending
on feature v2 is denoted as v1 → v2, which means feature v1
must be constructed after feature v2. In addition, the fea-
ture dependencies satisfy transitivity, i.e. v1 → v3 if v1 →
v2 and v2 → v3. The dependencies are obtained by ana-
lyzing the intersection of features, which is convenient in
cellular model. Since the analysis of feature dependencies
is processed after modification of feature definitions, the
conflict cells are ignored to ensure the reasonability of the
analysis. We sort the features in each cell’s owner list as the
order in history tree. If two features with opposite nature
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(a) (b)

Fig. 12. Swapping of features: (a) original history tree; (b) new
history tree with adjusted feature orders.

are adjacent in owner list, then the latter one depends on
the former one.

We use a matrix D to store the feature dependencies:
Dij = 1 if feature i depends on feature j, and Dij = 0 oth-
erwise. Based on the matrix D, we use Warshall algorithm
to compute the transitive closure.

4.4.2. Swapping of Features
We try to adjust the feature orders based on the feature
dependencies to eliminate the conflict cells. Supposing the
last feature in the owner list of a conflict cell is feature Fj , if
there exists a feature Fi in the owner list that satisfies i 6= j
and Dij 6= 1, then the conflict cell can be eliminated by ad-
justing the feature order between Fi and Fj . In order not
to introduce new conflicts in the process of feature orders
adjustment, we must preserve the original feature depen-
dencies. For instance, Fig. 12(a) shows the original feature
history tree, in which the directed edges represents the fea-
ture dependency relationships. Obviously, all the directed
edges are pointed from the latter features to the former fea-
tures, and there is no edge cycle. To swap the position of F2

and F7 while keeping the original feature dependencies, F4

must be put after F2, and F3, F5 must be put in the front
of F7 after swapping.

Our strategy for keeping feature dependencies is: collect
features with transitive dependencies as a group, and keep
the inner orders of features in the group during feature
swapping. Given two features Fi and Fj to swap, the feature
Fk(i < k < j) between them in the history tree can be
classified into three types: Fk1 that satisfies Fk1 → Fi; Fk2

that satisfies Fj → Fk2; and Fk3 that no feature Ft(i <
t < j) satisfies Fk3 → Ft or Ft → Fk3. Based on the
classification, the swapping is executed as follows:

1. Collect features of Fk1 and Fi as group g1, collect
features of Fk2 and Fj as group g2 and collect features
of Fk3 as group g3.

2. Rearrange these features in the order: group g2 first,
then group g3, and group g1 last.

After feature swapping, the conflict cells caused by in-
correct feature orders can be eliminated. If there exist no
conflict cells any more, the synchronization is successful;

otherwise we go to the next step of synchronization.

4.5. Addition and Deletion of Features

Addition of New Features The synchronization is not
guaranteed to succeed through modifying feature defini-
tions and adjusting feature orders in history tree. By adding
new features to the feature model, we can always achieve a
valid synchronization. The procedures are:

1. Select a conflict cell as the seed, and form a connected
region with other adjacent conflict cells having the
same nature.

2. Recognize extrusion feature for the conflict region.
Terminate the algorithm if the recognition succeeds.

3. If the recognition failed, set the region as a user-
defined feature, and set the feature’s nature of as op-
posed to the nature of the conflict cell.

4. Insert the new feature at the tail of history tree and
update the cellular model. Go to step 1 if there still
exists any conflict cell.

Deletion of Ineffective Features During the synchro-
nization process, the features do not contribute on the final
geometry are useless and should be deleted from the his-
tory tree. The procedures are:

1. For each additive cell, mark the last additive feature
in its owner list as useful.

2. For each negative cell, mark the last negative feature
as useful if there exists an additive feature before the
negative feature in the owner list.

3. Delete all the features without the usefulness marks
from the history tree.

5. Experimental Results

We illustrate the effectiveness of our automatic synchro-
nization method through three experiments. The original
feature information are obtained from commercial system
UG NX [4], and the synchronization process is implemented
based on the cellular topology husk of geometric modeling
toolkit ACIS.

The first example is shown in Fig. 1. When user applies
a direct modeling operation on one part of a feature face in
feature F3, our method first tries to synchronize through
modification of feature parameters. From Fig. 1(c), we can
see that the extrusion lengths of feature F3 and feature
F4 are increased. Then consistency checking is performed,
which detects two conflict regions. One of the conflict re-
gions is caused by intersection of feature F3 and feature F5,
which can be eliminated by swapping F3 and F5. Finally,
a new feature F6 is added to guarantee the success of syn-
chronization.

Fig. 13 shows the second example. The original feature
model and the direct editing, which drags four co-planar
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Table 1
Statistics of synchronization operations on the feature model, in

which #Sync1 means the number of feature definition modifications,

#Sync2 means the number of feature order adjustments and #Sync3
means the number of feature additions or deletions.

Example #Sync1 #Sync2 #Sync3 #Total

no.1 2 1 1 4

no.2 4 0 1 5

no.3 3 0 2 5

faces at the same time, are shown in Fig. 13(a). The cor-
responding synchronization process is shown in Fig. 13(b).
We can see that, during the synchronization, four features’
definitions are modified and a new feature is added into the
history tree. No features are swapped in the process. Anal-
ogously, Fig. 14 shows another synchronization example.

From these experiments, we demonstrate that our algo-
rithm can effectively synchronize the feature model with the
direct editing. More importantly, one direct modeling oper-
ation is usually converted into multiple equivalent modifi-
cations on the feature model, which can be seen from statis-
tics in Table 1. That means, without our automatic syn-
chronization method, users always need to manually mod-
ify many features’ definitions and orders in the history tree
to achieve the same editing effect as a single direct mod-
eling operation. Even worse, sometimes they need to add
or delete features. This indicates that our method indeed
brings great convenience to the users who wants to edit
feature models “directly”.

6. Conclusion and Future Work

In this paper, we proposed a novel synchronization method
to automatically keep the feature model consistent with
the direct editing result. By successively executing modifi-
cations of feature definitions, adjustments of feature orders
and additions/deletions of features, the method not only
ensures a successful synchronization solution, but also pre-
serves the design semantics of original model as much as
possible. During the process, we leverage the cellular model
to efficiently and effectively check geometric consistencies
and manipulate features. The experimental results show
that the synchronization algorithm works well for models
with extrusion features. In all, we believe our method opens
the possibility towards an elegant fusion between feature-
based modeling and direct modeling technologies.

In the future, we plan to explore the support of geometric
constraints during synchronization, which largely enriches
the design semantics of feature model and hence requires
more complex algorithms. In addition, we are also inter-
ested in synchronization of non-extrusion features and even
assembly model.
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Fig. 14. Example3: (a) the original feature model and the direct modeling operation; (b) the synchronization process.
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