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Neural Orthodontic Staging: Predicting Teeth
Movements with a Transformer

Jiayue Ma, Jianwen Lou†, Borong Jiang, Hengyi Ye, Wenke Yu, Xiang Chen, Kun Zhou, Youyi Zheng†

Abstract—We present a novel learning-based method for predicting tooth movements in orthodontic treatment path planning (or-
thodontic staging). Recognizing the multi-solution nature of orthodontic staging, our approach involves generating the staging sequence
progressively with a dedicated Transformer model. This model predicts teeth movements within a predefined number of steps (e.g., 10 or
20), targeting alignment in problematic dentition. The Transformer refines its predictions iteratively, building on previous outcomes until
reaching a state that aligns with the target within an acceptable distance. This mirrors real-life scenarios where orthodontists dynamically
adjust staging plans based on treatment outcomes. Our Transformer model is tailored to incorporate spatial and temporal attentions,
addressing inter-tooth and inter-step interactions, respectively. These attentions are further refined with relative positional encoding.
Recognizing the significant influence of tooth shape on the alignment process, we propose integrating a tooth-wise shape encoder to
extract morphological features from the 3D teeth point cloud. These features are then fused into the Transformer, facilitating the capture
of inter-tooth dynamics during staging, in collaboration with spatial attention. We validate the proposed method on a large-scale dataset
that contains 10K real-life orthodontic cases. The results show that our method outperforms the state-of-the-art, and orthodontists favor
its predictions.

Index Terms—orthodontic staging, transformers, shape encoding

✦

1 INTRODUCTION

O RTHODONTICS aims at aligning our bite and straightening
our teeth. However, the treatment planning of orthodontics

is non-trivial due to complex dental conditions such as crooked,
gapped, or overlapping teeth. Moreover, factors like dental health,
arch width, and cranial condition pose additional challenges to
orthodontic decision-making. As a remedy, staging breaks down
an orthodontic treatment plan into sequential steps. The teeth are
moved mildly toward the aligned target pose within each step.
This strategy allows orthodontists to monitor how the treatment
progresses and make timely adjustments for a desired outcome.

Despite its importance, orthodontic staging is mainly per-
formed by hand in clinical practice, which is time-consuming and
labor-intensive. An automated staging method is thus in demand.
Previous studies typically treat staging as an optimization problem
by integrating medical rules (e.g., no interdental collision) into the
objective function, then solve it with traditional algorithms such as
genetic algorithm [1], A* algorithm [2] and optimized artificial bee
colony algorithm [3]. Unfortunately, these approaches are prone
to local optimum and inept in addressing intricate medical rules
(e.g., facial aesthetics and orthodontic order) that are difficult
to formulate mathematically. Such inherent defects significantly
limit the approach’s overall staging performance while impeding
it from being applied to real-life clinical cases. As an alternative,
deep learning-based approaches have pushed the frontiers of many
fields, and orthodontics is no exception (e.g., automated tooth
alignment). However, it remains under-explored for automated
orthodontic staging. The following challenges hinder the progress.
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First, misaligned teeth are in various forms, resulting in a complex
distribution of staging sequences that is hard to model. Second,
the poses of neighboring teeth are dependent on each other,
which must be carefully treated during staging. Third, staging is
prone to accumulating errors step-by-step due to its sequential
nature. Fourth, orthodontic staging inherently accommodates mul-
tiple viable solutions. In practice, orthodontists adapt the staging
plan based on observed treatment outcomes, resulting in diverse
pathways of varying lengths, even from similar initial states. This
variability makes it challenging to predict the precise number of
staging steps in advance. Many existing methods assume a fixed
step count and use interpolation to generate intermediate poses
simultaneously, overlooking the intrinsic multi-solution nature of
orthodontic staging.

In this paper, rather than generating a complete staging se-
quence concurrently, we adopt an iterative approach to mimic
real-life scenarios. We propose recasting orthodontic staging into
a sequence-to-sequence prediction framework, leveraging Trans-
formers as the backbone. Transformers are renowned for their
proficiency in managing sequential data and capturing intricate
data dependencies through the attention mechanism. In orthodon-
tic staging, where there are complex interactions between teeth
and sequential treatment steps, the attention mechanism proves
invaluable. This capability positions Transformers as a highly
suitable choice for iterative predicting in orthodontic staging. Ini-
tially, we train a Transformer to forecast the movement tendencies
of teeth from any problematic state towards alignment within
a limited number of steps (e.g., 10 or 20 steps). Subsequently,
we iterate the Transformer’s predictions until they converge to
an acceptable deviation from the target aligned dental state. The
final state of the last prediction round serves as the starting
point for the Transformer in the next iteration. The ultimate
staging sequence is obtained by concatenating these short-term
predictions from the Transformer. Our Transformer incorporates
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spatial attention to model inter-tooth relationships and temporal
attention to grasp the progression across steps. To enhance the
Transformer’s comprehension of both the spatial arrangement of
teeth and their temporal dynamics during orthodontic staging,
we augment it with dual unlearned relative positional encodings.
To accurately represent tooth morphology, we employ a tooth-
wise shape encoder to extract shape features from 3D teeth
point clouds as shape codes, which are then integrated into the
Transformer. The collaboration between shape codes and spatial
attention significantly enhances the network’s capacity to simulate
dynamic relationships among teeth. We verify the effectiveness
of the proposed iterative Transformer-based approach on a dataset
comprising 10K real-world orthodontic staging cases, each provid-
ing a sequence of 3D teeth point clouds captured along the staging
process with a high-precision oral scanner and the corresponding
pose labels. Our method achieves state-of-the-art performance in
neural orthodontic staging. The results are quantitatively sound
and favored by orthodontists.

In summary, the main contributions of our work are:

• We present the first Transformer-based method for or-
thodontic staging, featuring an iterative framework that
leverages the Transformer for short-term predictions.

• We integrate spatial attention to capture inter-tooth cor-
relations and temporal attention to model inter-step rela-
tionships into our Transformer, equipped with unlearned
relative positional encodings. We also incorporate shape
codes extracted from a tooth-wise shape encoder to enrich
the network’s comprehension of tooth morphology.

2 RELATED WORK

2.1 Automated Orthodontic Staging

Orthodontic staging, or orthodontic path planning, divides the
movement of teeth into a series of stages based on the initial
and target poses of teeth such that an aligner can faithfully align
the teeth by the stages while obeying the biomechanics. Existing
methods for automatic orthodontic path planning are primarily
optimization-based. Li et al. [1] use a genetic algorithm to find
the optimal path for teeth movement, with the objective function
defined as the weighted sum of movement distance, rotation
angle, and motion constraints. However, genetic algorithms tend
to premature convergence and may get stuck in local optima. Li
et al. later use A* algorithm [2] and improve artificial bee colony
algorithms [3] to address orthodontic staging. To accelerate the
running speed, Xu et al. [4] apply the particle swarm optimization
algorithm to optimize teeth movement paths and use oriented
bounding boxes for collision detection. However, their approach,
which treats all teeth as a single particle, does not consider the
varying speeds of different teeth. To address this issue, Ma et al.
[5] assign different inertia parameters to particles to distinguish
different teeth. Despite its simplicity, particle swarm optimization
performs suboptimal when dealing with high-dimensional prob-
lems such as orthodontic staging and is prone to local optima. A
recent optimization method [6] improves the convergence factor
and position update strategy of the grey wolf algorithm (IGWO),
encoding the movements of all teeth across multiple stages using a
single grey wolf entity and initiating through interpolation. These
optimization-based methods mainly focus on minimizing the total
movement distance of teeth while neglecting the movement order.
Their case-specific design and the lack of diverse data samples

significantly limit their capacity to handle complex cases. In
this paper, we propose a data-driven method that employs a
Transformer-based neural network to learn the artificial staging
patterns from a large-scale dataset of various clinical staging cases.
Leveraging real clinical insights enables our approach to address
complex orthodontic challenges more effectively. A concurrent
work [7] proposes a collaborative tooth motion diffusion model
that redefines orthodontic tooth motion planning as a diffusion
process, integrating inter-tooth and occlusal constraints through
graph structures and novel loss functions to enhance the learning
of multi-tooth motion distributions. However, this method requires
predefining the number of staging steps, limited by the prediction
length and computation time.

2.2 Learning on 3D Point Cloud
Numerous studies have delved into deep learning techniques in
point cloud learning with applications including classification,
segmentation, object detection, tracking, registration, and com-
pletion. Our research targets the specific challenge of representing
tooth shapes using point clouds to assist in orthodontic staging
generation. Key efforts in point cloud learning include PointNet
[8] and its improved version, PointNet++ [9], which become
prominent for their ability to address the point cloud disorder
problem. PointNet [8] introduces a transformation network and
a symmetric function to ensure permutation invariance for un-
ordered points. PointNet++ [9] enhances it by incorporating a
hierarchical structure to extract local features at multiple scales.
Due to CNN’s ability to share weights, some works [10], [11],
[12] adopt it for point cloud feature learning. Graph-based models
like Dynamic Graph CNN [13] focus on capturing relationships
between points to improve feature learning. Unsupervised learn-
ing methods, particularly autoencoders, have been explored for
learning point cloud representations [14], [15], [16]. FoldingNet
[14] introduces a peculiar decoder design to simulate a 2D-to-
3D mapping based on an autoencoder, proving useful in point
cloud completion tasks [17], [18]. TopNet [19] proposes a novel
decoder to generate structured point clouds without assuming
any particular structure or topology. Led by PCT [20] and Point
Transformer [21], a substantial body of transformer-based works
have emerged in the field of point cloud processing [18], [22],
[23], [24]. These methods have shown promising performance
on publicly available datasets, but the high dimensional encoder
output features are typically bloated for the implicit representation
of tooth shapes. Since the teeth are similar, we set a compact
encoding size.

2.3 Sequence-to-sequence Prediction
Sequence-to-sequence(Seq2Seq) models, originally designed for
tasks like machine translation, have been progressively applied
to a range of applications, including text summarization, speech
recognition, and video synthesis. These models are adept at
transforming input sequences into output sequences, making the
Seq2Seq framework well-suited for predicting the stages of or-
thodontic treatment plans.

Seq2Seq prediction is fundamentally based on the encoder-
decoder architecture. The encoder processes the input sequence,
capturing its essential information into a fixed-length vector and
the decoder then generates the output sequence from this vec-
tor. Early Seq2Seq models [25], [26]relied on recurrent neural
networks (RNNs) and their variants, such as Long Short-Term
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Fig. 1. The overall pipeline of our method. Given the raw tooth models, the misaligned source pose xsrc, and the aligned target pose xtgt , our network
performs short-term predictions as depicted in (a). Within the tooth-wise shape encoding module, we sample point clouds pi for each tooth model
i, then employ the tooth shape encoder to extract shape features ci. The shape features of all teeth constitute the shape codes. The shape codes,
together with the replicated source pose and target pose, are fed into the staging transformer module to forecast the next N steps. To generate a
full staging sequence, we iteratively apply the network to estimate intermediate results as shown in (b). Each prediction round’s endpoint serves as
the next round’s starting point, continuing until the predicted poses closely approximate the aligned target pose.

Memory (LSTM) networks, to manage sequence data. How-
ever, challenges like vanishing gradients, accumulating errors and
computational inefficiency often hamper these recurrent models’
ability to forecast over a long range. Convolutional networks
enable parallel processing of sequence elements, unlike RNNs,
which rely on sequential hidden states that hinder parallel compu-
tations within a sequence. Gehring et al. [27] hence proposes an
entirely convolutional architecture for quicker training and easier
optimization.

The Transformer model proposed by Vaswani et al. [28] marks
a paradigm shift in Seq2Seq prediction. Transformers eschew
recurrence in favor of self-attention mechanisms, allowing the
model to weigh the importance of different parts of the input se-
quence directly. This architectural innovation bolsters the model’s
proficiency in capturing long-term dependencies and markedly en-
hances training efficiency. The development of pre-trained models
further demonstrates the Transformer’s effectiveness across vari-
ous NLP tasks. Notably, BERT (Bidirectional Encoder Represen-
tations from Transformers) [29], which learns contexts from both
sides of the text, establishes a new benchmark in language under-
standing. Moreover, Radford et al. [30] propose GPT-2 trained on
extensive textual corpora to predict texts, pushing the boundaries
of generative text models. Beyond text, the Transformer has found
applications in speech recognition [31], [32], music generation
[33], [34], time series forecasting [35], [36], video prediction [37],
[38], and video inpainting [39], [40], showcasing its versatility
for processing various input sequence types. The data structure
of orthodontic staging is akin to that of videos, inspiring us to

learn spatial and temporal dynamics via Transformers. We frame
orthodontic staging as a Seq2Seq prediction task and propose
a data-driven strategy armed with Transformers. This method
excels in modeling long-term dependencies, allowing for effective
capture of inter-tooth and inter-step relationships.

3 METHOD

3.1 Overview

Staging in orthodontics involves planning the trajectory of tooth
movement, dividing the orthodontic treatment into a sequence
of steps wherein teeth progressively shift toward an organized
alignment. Existing methods predetermined the number of steps
and estimated the steps between the given source and target
dentitions to address the staging challenge [1], [2], [4], [5], [6],
[7], [41]. This strategy significantly restricts the solution space.
In contrast, real-world orthodontic practice necessitates regular
treatment adjustments by dentists based on patient responses and
orthodontic progress, implying that even with similar initial and
final dental states, the actual movement path and step count
can vary. The inherent multi-solution nature of staging demands
a dynamic approach. With this insight, we posit that the crux
of staging lies in short-term forecasting from any problematic
dentition.

The new problem is formulated as follows: with the goal of
achieving an aligned dentition xtgt , the objective is to predict
the moving pathway of the teeth {yλ+1,yλ+2, ...,yλ+N} over the
next N steps, starting from a misaligned initial dentition xsrc = yλ
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along with its corresponding 3D teeth point cloud. In the context
of a dentition yt ∈ R28×9, it refers to the 3D positions and 6D
rotations of 28 teeth relative to a predefined reference at step t.
We propose a novel Transformer structure to tackle the problem.
This Transformer incorporates a custom attention mechanism,
utilizing spatial attention for inter-tooth correlation and temporal
attention for inter-step correlation. Shape features for each tooth
are extracted using a tooth-wise shape encoder, collected to form
a shape code that, in collaboration with spatial attention, captures
dynamic inter-tooth relationships. With this Transformer-based
prediction model, we iteratively finalize the staging sequence
updating λ = λ + N and using intermediate outcomes, which
mirrors real-world scenarios with dynamic adjustments to the
pathway.

3.2 Tooth-wise Shape Encoding
Dental conditions are affected by both tooth poses and shapes.
Although the spatial relationship between teeth may vary during
the staging procedure, tooth shapes remain constant. To address
this, we propose to independently extract shape features for each
tooth using an identical tooth shape encoder. These features as
shape codes are transformed in the control condition module, col-
laborating with the spatial attention mechanism (refer to Sec 3.3.2
for details) in the transformer to capture dynamic inter-tooth
relationships during staging.

For a tooth i, before encoding its tooth shape, we extract
a point cloud pi ∈ R8092×3 by sampling 8092 points over the
raw 3D tooth scan, and align the point cloud with a unified
reference coordinate system. We employ the transformer-based
encoding mechanism outlined in [18] as the shape encoder G,
taking 8092 points pi as input. It produces a 108-dimensional
vector ci ∈ R108, which serves as the shape code of the respective
tooth i. In cases where teeth are extracted before the orthodontic
intervention, resulting in missing models and poses, we set the
shape codes for these teeth to a zero vector 0108. We retrain our
encoder and its paired decoder [18] with our tooth data on a point
cloud completion task, aimed at reconstructing full point clouds
from partial inputs. We optimize the encoder-decoder networks by
minimizing the chamfer distance between the reconstructed point
clouds and their original counterparts. During staging generation,
we discard the decoder and solely utilize the pre-trained encoder
with its parameters fixed, where the encoder’s input is the com-
plete original point cloud. The encoding process can be formulated
as below:

ci = G(pi) (1)

For integration into the generative staging transformer, we use
the 28 vectors c0:27 as a control condition and prepend them
to the existing dental state sequence. See Sec 3.3.1 for specific
operations.

3.3 Staging Transformer
Leveraging the transformer’s proven success in natural language
processing and its capability to handle long-range dependencies,
we utilize it as the backbone of our staging generation network
S. This network, depicted in Figure 2, adheres to an encoder-
transformer-decoder architecture. It processes an arbitrary mis-
aligned dental state xsrc = yλ , a target aligned state xtgt , and
the shape codes c0:27, subsequently producing the future N steps
yλ+1:λ+N . At each step t, the state xt or yt comprises the global

Fig. 2. The overall structure of the Transformer-based staging generation
network.

positions pt ∈R28×3 and 6D rotations [42] rt ∈R28×6 of 28 teeth.
To fit the sequence-to-sequence transformer model, we replicate
xsrc for N times and replace the unknown values in the next N
steps denoted as {xn = xsrc}N

n=0. We model the staging generation
as:

y = S(x0:N ,xtgt ,c0:27) (2)

S(·) = SD(Strans(SE(Ctrl(·)),L)) (3)

where Ctrl(·) denotes the Control Condition module, which inte-
grates dental states x0:N with shape codes and target state as z. The
encoder SE , transformer layers Strans and decoder SD correspond
to three sub-networks within the staging transformer, respectively.

The encoder SE transforms the dental states z into D-
dimensional latent embeddings H0 = SE(z) through a fully con-
nected network, comprising linear and activation layers.

Our transformer layers Strans follow the canonical transformer
architecture, featuring Multi-Head Self-Attention (MHSA), Feed-
Forward Networks (FFN), and residual connections. We distin-
guish our transformer with three key modifications. First, we
incorporate shape codes and target state into our transformer
as control conditions. Second, we sequentially use spatial self-
attention and temporal self-attention modules within a single layer.
Third, we add relative positional encoding to the attention scores
as a bias matrix in both spatial and temporal attention blocks (Spa-
tial Layout Positional Encoding and Temporal Relative Positional
Encoding), instead of using absolute positional encoding before
entering the transformer layer. The processing flow in Strans can
be formulated as:

Ĥ l
space = H l−1 +MHSAspace(LayerNorm(H l−1)) (4)

Ĥ l
time = Ĥ l

space +MHSAtime(LayerNorm(Ĥ l
space)) (5)

H l = Ĥ l
time +PFFN(LayerNorm(Ĥ l

time)) (6)

where H l represents the output of layer-l (l = 1, . . . ,L).
The decoder SD, structurally similar to the encoder, is a fully

connected network that transforms the D-dimensional output HL

of the transformer layers into the predicted staging sequence y.
We optimize the Staging Transformer S by minimizing the per-

step reconstruction loss Lrec and the smoothness loss Lsmooth over
the estimated steps. The overall loss functions are calculated as
follows:

Ltotal = Lrec +Lsmooth (7)
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Fig. 3. We demonstrate two strategies for integrating control conditions
into tooth poses: direct concatenation (a) and our fusion strategy (b).

Lrec =
apos

N

N

∑
t=1

∥pt − p̂t∥1 +
arot

N

N

∑
t=1

∥rt − r̂t∥1 (8)

Lsmooth =
bpos

N

N

∑
t=1

∥p̂t − p̂t−1∥1 +
brot

N

N

∑
t=1

∥r̂t − r̂t−1∥1 (9)

where pt ,rt are the ground truth global position and global rotation
at step t, while p̂t , r̂t are the predicted output. N denotes the
length of the predicted sequence. apos,arot ,bpos and brot are the
coefficients for the loss functions.

3.3.1 Control Conditions
To enhance the staging transformer with shape and target pose
information, we initially consider concatenating the tooth’s shape
code and target pose with its source pose directly (Fig. 3a). How-
ever, this approach introduces significant data redundancy since
both the shape code and target pose remain unchanged throughout
the staging process. Moreover, the disparity in dimensionality risks
overshadowing crucial pose details. To resolve these issues, we
propose integrating the shape codes {ci ∈ R108}27

i=0 and the target
poses {xi

tgt ∈ R9}27
i=0 of 28 teeth into the staging transformer as

control conditions, following principles from [43]. Specifically,
for each tooth i, we segment its shape code ci into twelve 9-
dimensional vectors {ci, j ∈ R9}11

j=0. These segments, along with
the tooth’s target pose xi

tgt , are prepended to its pose sequence
{xi

n ∈ R9}N
n=0 along the temporal dimension, where N indicates

the number of staging steps to be estimated. This process creates
a new input sequence in R(14+N)×9 (see Fig. 3b). To facilitate
subsequent attention computation, we append a binary mask
m ∈ Z(14+N)×1 to the input sequence. This mask indicates the
availability of pose information, with 1 denoting known and 0
denoting unknown pose information.

3.3.2 Spatial and Temporal Self-Attention
Our transformer’s effectiveness stems from the spatial-temporal
attention mechanism. Both types of attention conform to the
standard attention framework, as formulated below:

MHSA∗(x) = Concat(head1
∗, ...,headh

∗)W
O (10)

headi
∗ = Attention∗(xW Q

i ,xW K
i ,xWV

i ) (11)

Attention∗(Q,K,V ) = softmax(QKT +B∗)V (12)

where B∗ denotes the relative positional bias matrix related to
the number of heads h and the type of attention. For spa-
tial attention MHSAspace, Bspace ∈ R28×28 represents the Spa-
tial Layout Positional Encoding, derived from the adjacency

Fig. 4. Illustration of the spatial and temporal attention.

between 28 teeth. And Temporal Relative Positional Encoding
Btime ∈ R(14+N)×(14+N) for temporal attention MHSAtime encodes
the relative distance between any two time steps.

As mentioned in Sec 3.2, our shape code, obtained from inde-
pendently encoded teeth, lacks modeling of inter-tooth dependen-
cies. We bridge this gap with spatial attention, which is well-suited
for describing spatial relationships. Our spatial attention focuses
solely on the relative spatial positions of different teeth within
the same time step. To further enhance the spatial dependencies
among teeth, we introduce a spatial layout encoding Bspace based
on the prior knowledge of intrinsic teeth arrangement on the dental
arch. We fuse this spatial layout positional encoding into attention
score through element-wise addition (detailed in Sec 3.3.3).

Orthodontic staging predicts the dental states at different time
steps, which is essentially a sequence prediction task. Hence,
we naturally introduce temporal attention to capture correlations
between these steps. Notably, to preserve the relative spatial
relationships of input and output in each transformer layer, our
temporal attention blocks are designed to process only the sequen-
tial states of a single tooth, rather than aggregating the states of all
teeth across varying time steps. The output of the spatial attention
block serves as the input for the temporal attention block. Similar
to spatial layout positional encoding, we employ an additional
temporal relative positional encoding strategy Btime to effectively
represent the sequential order of time steps and enable a more
nuanced understanding of the temporal dynamics (see details in
Sec 3.3.3).

3.3.3 Positional Encoding
To compensate for the transformer’s inherent lack of sequential
order, we adopt additional positional encodings to extract the
spatial and temporal information of teeth. Inspired by [44], we
introduce a non-learned relative positional encoding strategy. It
involves calculating relative positions between any two tokens
and multiplying them by a head-specific scalar µ to form a po-
sitional bias matrix. The matrix is then added element-wise to the
attention scores, bypassing dimensional normalization. We design
two distinct relative positional correlations (i.e.,ρspace,ρtime) for
spatial and temporal attention, respectively, and then encode them
to obtain spatial layout encoding Bspace and temporal relative
encoding Btime.

Intuitively, the movement of each tooth is influenced by its
neighboring teeth in the spatial domain, with closer teeth having
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a greater impact. To address this, we propose a correlation term
ρspace(i, j) which quantifies the number of teeth between tooth i
and tooth j. The term is multiplied by -1 to signify a stronger
correlation when there are fewer intervening teeth. We assign
numbers to the teeth from 0 to 27, with 0-13 representing upper
jaw teeth and 14-27 representing lower jaw teeth. Additionally,
the correlation is encoded by a positive head-specific scalar µ ,
allowing for the incorporation of distinct positional information in
different heads.

Bspace(i, j) = µ ·ρspace(i, j) (13)

ρspace(i, j) =−di j (14)

where Bspace(i, j) denotes the spatial positional encoding derived
from the correlation ρspace(i, j) between tooth i and tooth j. The
variable di j indicates the number of teeth between tooth i and tooth
j.

Temporally, our orthodontic staging sequences progress from
misaligned to aligned states, so that the sequential order over the
temporal dimension is crucial. Each treatment step is intrinsically
linked to others. It is observable that one step is more similar to its
adjacent steps and less to distant ones. We represent the temporal
positional relationships by calculating relative distances ρtime(i, j)
between two steps i and j. Similar to spatial positional encoding,
we multiply temporal relative distances ρtime(i, j) by a scalar µ

to get temporal positional encoding Btime. Unlike Alibi encoding,
which is unidirectional and masks future steps to focus on past
ones, our staging model equally considers both preceding and
subsequent states. We hence eschew attention masks and calculate
distances without absolute functions, allowing for distinguishing
forward and backward positions in the sequence. Our experiments
demonstrate that this directed positional encoding method yields
superior performance.

Notably, our sequence begins with a fixed set of control
conditions comprising 12 shape encoding tokens and a target state.
Directly calculating the relative positions diminishes the influence
of the control conditions on subsequent tokens. To address this,
we set the relative distance between each step and the control
conditions to zero, ensuring that the positional matrix exclusively
covers the dental state sequence. The temporal positional encoding
Btime(i, j) between step i and step j can be obtained as follows:

Btime(i, j) =

{
0 if i < 13 or j < 13
µ ·ρtime(i, j) otherwise

(15)

ρtime(i, j) = i− j (16)

4 EXPERIMENTS

4.1 Implementation Details

4.1.1 Network Details
For the tooth shape encoder G, we adapt the PoinTr encoder
to output 108-dimensional features, where its Geometry-aware
Transformer Encoder has 6 heads and a depth of 6 layers. For
the staging generation network S, the encoder SE maps the
10-dimensional input into a 56-dimensional space with a 56-
dimensional hidden layer. The transformer layers Strans for the
generation have 8 heads and 6 layers in depth. The decoder SD
is similar to the encoder, mapping the 56-dimensional data into a
9-dimensional space as the output.

4.1.2 Training Details
The shape encoder G is trained from scratch on a subset of our
dental model dataset with a batch size of 32 for 200 epochs. The
dataset consists of 42,868 samples. We then freeze its parameters
and train the Staging Transformer S for maximum 100 epochs with
a mini-batch of 16 clips. Each clip is retrieved by sliding a window
of 31 from the datasets. In each batch, we randomly sample the
prediction length from 5 to 30. We use the Adam optimizer and
Noam learning rate scheduler to train our model on one RTX 3090
GPU. The initial learning rate is set to 0.05 with an 8000-iteration
warm-up. Throughout our experiments, the loss weights are apos
= 0.1, arot = 1.0, bpos = 0.1 and brot = 1.0.

4.1.3 Datasets
We acquire data from 10,000 real-world orthodontic cases pro-
vided by an aligner company. Each case includes a 3D dental
model of the initial misaligned dentition and a sequence of
orthodontic poses that progressively move the teeth towards align-
ment. It is important to note that the data excludes any tooth shape
alterations during orthodontic treatment stages, such as those
resulting from interproximal reduction (IPR). This differs slightly
from reality, as modifying tooth shape is sometimes necessary to
prevent inter-tooth collisions during treatment. We split the dataset
into training, validation and test sets by 8:1:1. The number of
standard teeth is 28, and there are 2693 cases with missing models
in the dataset. Sampling on the training set yields 14,7394 clips,
derived from a sliding window with a window size of 31 steps and
an offset of 1 step. The validation set contains 6142 clips, obtained
with a window of 31, offset by 5 steps. We don’t sample on the
test set for long-term prediction.

4.2 Evaluation Metrics

We follow L2P and L2Q [45] to evaluate the performance of our
network predictions. L2P and L2Q denote the average L2 distance
of global position and global quaternion rotation per step. We
normalize the data before calculating L2P and L2Q. In addition,
we define Mean Position Error (MPE) and Mean Rotation Error
(MRE) to compute each tooth’s position error and angle error at
each step without normalization.

In our study, we evaluate both short-term and long-term pre-
diction utilizing the metrics above. We assess short-term forecast
accuracy for prediction lengths from 5 to 30 on the validation
set. For a comprehensive evaluation of the entire sequence, we
conduct iterative predictions on the test set with an offset of 25
steps and evaluate the metrics based on the length of predicted
sequences. Apart from the aforementioned metrics, we calculate
the difference ∆N between the lengths of the predicted sequences
and the corresponding clinical staging pathways.

4.3 Results and Comparisons

4.3.1 Qualitative Results
Our model is designed to output short-term pathways, while the
actual staging process often corresponds to longer steps. We hence
provide a complete staging sequence in an iterative manner. The
process initiates from a source state xsrc with the model forecasting
a series of steps per iteration. The final step of each iteration
is then set as the initial state for the subsequent iteration. This
cycle continues until the predicted outcome closely approximates
the target state, adhering to predefined thresholds (a maximum
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Fig. 5. Visual effects of iterative full-sequence prediction. Our predicted outcomes achieve the target state at step 65 (rendered in pink), while the
clinical reference pathway reaches it at step 64 (in gray). Both staging pathways prioritize repositioning the molars and then premolars to secure
space for adjusting the misaligned anterior teeth.
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Fig. 6. Visual effects of iterative full-sequence prediction with a missing first molar on the lower left side. Our predicted outcomes achieve the target
state at step 47 (rendered in pink), while the clinical reference pathway reaches it at step 51 (in gray). Both pathways concentrate on shifting the
molars first and then the premolars to facilitate the adjustment of anterior teeth.

displacement of 0.5mm per tooth per step and a maximum rotation
of 3° per step). Fig. 5, Fig. 6 and Fig. 7 illustrate our iterative
prediction outcomes and clinical reference pathways. In these
cases, we show key steps in the sequence, displaying the top,
front, and side views of the upper and lower teeth. We observe
that in cases of severe crowding and misalignment, the trend of the
predicted movements aligns closely with the reference paths, with
a comparable number of staging steps. For more visual effects,
please refer to the videos in the supplementary materials.

4.3.2 Comparisons
To demonstrate the superiority of our Transformer-based method,
we compare it with the interpolation baseline (Interp) [41],
the recent optimization-based improved Gray Wolf Optimization
method (IGWO) [6] and the concurrent tooth motion diffusion
model (TMDM) [7] in terms of quality and quantity. The inter-
polation method performs linear interpolation for tooth positions

and Spherical Linear Interpolation (SLERP) for tooth rotations.
The IGWO method minimizes the total sum of tooth displacement
distances and rotation angles while utilizing oriented bounding
boxes for tooth collision detection. The TMDM method leverages
a diffusion process for prediction and integrates tooth latent
representation with graph-based multi-tooth collaboration. These
methods necessitate manually setting the number of staging steps,
aligning with the reference pathways for consistency. As shown
in Table 1, our method demonstrates a reduced deviation from the
reference pathways compared to the first two competing methods
which are not data-driven, thereby indicating better real-world
applicability. Additionally, our method outperforms the diffusion-
based approach on all evaluated metrics.

To validate our iterative strategy, we conduct comparisons of
direct regression based on our Staging Transformer (TransReg).
We train and test the model with a sliding window of length 128, to
cover various orthodontic sequences. Short sequences are padded
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Fig. 7. Visual effects of iterative full-sequence prediction with a missing first premolar on the lower right side. Our predicted outcomes achieve the
target state at step 34 (rendered in pink), while the clinical reference pathway reaches it at step 36 (in gray). Both paths involve sequentially moving
the molars, premolars, canines, and incisors.

TABLE 1
Comparison with other methods

Method L2P L2Q MPE(mm) MRE(◦) ∆N Time Cost(s)

Interp [41] 1.40 (+42.86%) 0.19 (+26.67%) 0.51 (+82.14%) 3.15 (+61.54%) \ 0.1010.1010.101 (-55.11%)
IGWO [6] 1.42 (+44.90%) 0.20 (+33.33%) 0.50 (+78.57%) 3.48 (+78.46%) \ 545.3 (+242255%)

TMDM 1.06 (+8.16%) 0.19 (+26.67%) 0.36 (+28.57%) 2.99 (+53.33%) \ 21.28 (+9358%)
TransReg 1.01 (+3.06%) 0.150.150.15 (+0.00%) 0.29 (+3.57%) 2.02 (+3.59%) 9.199.199.19 (-23.35%) 0.124 (-44.89%)

Ours 0.980.980.98 0.150.150.15 0.280.280.28 1.951.951.95 11.99 0.225

TABLE 2
Comparison of Collision Frequency

Threshold Interp IGWO TMDM TransReg Ours Reference

Overall Colli-
sion Frequency

0.5mm 0.0415 0.0408 0.0402 0.0406 0.0397 0.0382
0.3mm 0.1149 0.1088 0.0994 0.1014 0.0996 0.0895
0.1mm 0.2322 0.2286 0.1886 0.1851 0.1830 0.1436

Tooth#1 Colli-
sion Frequency 0.1mm 0.3095 0.2731 0.0557 0.0166 0.0035 0.0000

Tooth#2 Colli-
sion Frequency 0.1mm 0.1814 0.0934 0.0329 0.0310 0.0126 0.0000

Tooth#3 Colli-
sion Frequency 0.1mm 0.0944 0.0731 0.0075 0.0146 0.0064 0.0000

with the last step. As indicated in the fourth and the fifth rows of
Table 1, although the iterative approach marginally increases both
time cost and length error, it enhances prediction accuracy.

Figure 8 offers a visual comparison of a case of lower tooth
crowding, showcasing top and front views. The interpolation

method ignores the spatial inter-tooth correlation, proceeding with
tooth movement even in constrained spaces. The TMDM method
shows some capability in learning movement patterns that initially
shift certain teeth to create sufficient space. However, since its
diffusion model relies on GRUs, TMDM has limitations in pro-
cessing longer sequences, which hinders its ability to precisely
coordinate the planning of tooth movements. And the pathways
produced by these two methods both result in tooth intersections.
Our method, in contrast, learns teeth movement patterns from
extensive training cases and adeptly manages the order of tooth
movements, ensuring adequate space for dental crowding. Specif-
ically, the iterative short-term prediction framework benefits from
accommodating multiple solutions during training and testing.
This capability provides a clear advantage in managing orders
of tooth movements over frameworks that directly predict long
sequences.

Collision Avoidance Avoiding interdental collisions in the
planning of tooth movement paths is crucial. To evaluate the
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Fig. 8. A visual comparison of several methods. Our method iteratively predicts a path length of 43 steps, while the direct regression method using
a Transformer (TransReg) produces 39 steps. Both interpolation (Interp [41]) and diffusion-based model (TMDM [7]) manually set the path length
to 44 steps, matching the clinical reference. We present only the top and front views of the lower teeth. Until step 21, our method and the reference
path shift the right-side teeth to accommodate the crowded central incisors, lateral incisors, and canines. TransReg rapidly repositions the right-side
teeth as well; however, the left lateral incisor and the left canine move before the right-side teeth completely vacate the area. In contrast, Interp
opts for the shortest path, moving teeth incrementally in crowded situations instead of creating space. TMDM moves the right-side teeth almost
simultaneously, rather than in sequential batches. As a result, the left incisor begins to move earlier compared to other methods. At steps 21 and 26,
the left lateral incisor and left canine models in the TransReg, Interp and TMDM methods appear to intersect, unlike our method and the reference
path, which maintain spacing (highlighted in red box for emphasis, with the left canine rendered semi-transparently).

performance of various methods in collision avoidance, we
compute the average overall collision frequency, defined as
collision count/(step count× tooth count). Specifically, we extract
the convex hull of each tooth and assess collision using the
Gilbert-Johnson-Keerthi (GJK) algorithm from the hpp-fcl library
[46], with penetration depth thresholds of 0.1mm, 0.3mm and
0.5mm. The results are exhibited in Table 2. It can be seen that
collisions are detected even in the reference paths. This is due
to the simplification of tooth shape consistency, as explained in
Section 4.1.3 - Datasets. To enhance clarity, we specifically select
some teeth that are collision-free along the reference pathway
to evaluate the robustness of the proposed algorithm in collision
avoidance (as shown in the last three rows of Table 2). As indicated
in Table 2, despite the lack of a dedicated mechanism for collision
avoidance, our method demonstrates robustness against collisions

throughout the staging process. It learns tooth movement patterns
from reference paths, effectively mimicking reference to prevent
collisions and yielding results comparable to those paths.

Discontinuity Prevention Orthodontic treatment should
avoid abrupt changes in tooth movements. To assess the ef-
fectiveness of various methods in preventing such discon-
tinuities, we compute the discontinuity frequency, defined
as sudden changes count/(step count × tooth count). A sudden
change is defined as a displacement greater than 0.5 mm or a rota-
tion exceeding 3 degrees in a single step. As shown in Table 3, the
interpolation method and the reference path exhibit very smooth
results, with no detected discontinuities. Both TransReg and our
approach, optimized with a smooth loss function, demonstrate
superior performance in discontinuity prevention.
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TABLE 3
Comparison of Discontinuity Frequency

Interp IGWO TMDM TransReg Ours Reference

Overall
Discontinuity

Frequency
0.000000.000000.00000 0.00351 0.00407 0.00116 0.00023 0.000000.000000.00000

4.4 Ablation Study
In this section, we ablate key components of our proposed network
model, on the validation set. We assess the performance of
different network configurations across prediction lengths from
5 to 30, utilizing metrics such as L2P, L2Q, MPE, and MRE.

4.4.1 Attention Mechanism
To verify the effectiveness of the spatial attention and the temporal
attention mechanism, we conduct an ablation study by removing
each attention module from each transformer layer.

The comparison between Row 1 and Row 3 in Table 4 reveals
that, in the absence of the temporal attention module, removing the
spatial attention module yields better performance than including
it for shorter sequences (lengths of 5 and 10). However, for
longer sequences, the inclusion of spatial attention enhances the
network’s predictive ability to some extent. With the temporal
attention module, the Row 2 vs. Row 4 comparison indicates that
adding spatial attention consistently improves performance across
various sequence lengths, significantly reducing the metrics. These
results highlight the critical role of inter-tooth spatial interactions
and the foundational role of inter-step temporal relationships in
the predictive accuracy of the network.

When assessing the temporal attention module (Row 1 vs.
Row 2, Row 3 vs. Row 4), the staging transformer equipped with
temporal attention greatly surpasses its counterpart without the
module. The temporal attention module achieves a more signif-
icant reduction in performance metrics compared to the spatial
attention module. These findings underscore the importance of the
temporal attention module for handling time series data.

Particularly, when spatial attention is already included (Row
3 vs. Row 4), the temporal attention module provides a greater
boost to prediction performance than in spatial attention’s absence
(Row 1 vs. Row 2). This suggests that the synergy between
the two modules leads to enhanced predictive capabilities of our
Transformer.

4.4.2 Tooth Shape Encoding
To prove the indispensability of shape codes, we exclude them
from the staging transformer’s input. We also compare the perfor-
mance of shape codes generated by various tooth shape encoders.
Specifically, FoldingNet [14] employs a graph-based encoder,
whereas SnowflakeNet [23] and our utilized PoinTr [18] both
incorporate transformer-based encoders. As indicated in Table 5,
shape codes produced by PoinTr slightly enhance the predictive
performance of the network. Contrarily, SnowflakeNet and Fold-
ingNet fail to exhibit any superior performance over configurations
devoid of shape codes across various metrics, contracting our
initial hypothesis. We think that the spatial attention mechanism,
devised to offset the limitations of shape codes in modeling
tooth interaction dynamics, assumes a primary role in prediction,
relegating shape codes to a secondary position. Consequently,
we conduct another ablation study for shape codes on networks
without the spatial attention module. Table 6 reveals that, in the

absence of spatial attention, employing shape codes remarkably
excels over not using them. Among the encoding methods, shape
codes generated by PoinTr demonstrate superior overall efficacy
compared to the other two methods. The findings presented in
Table 5 validate our aforementioned hypothesis.

4.4.3 Positional Encoding
We investigate the effectiveness of our proposed spatial layout
positional encoding and temporal relative positional encoding
by removing or replacing the Staging Transformer’s positional
encodings. The last row in Table 7 shows the complete model.
The blank entries in the first three rows indicate the absence of
specific positional encodings. Compared to the baseline without
any positional encoding (first row), incorporating either spatial
(second row) or temporal (third row) positional encoding enhances
performance, particularly noting that temporal encoding exerts
a more pronounced effect. Spatial encodings are less impactful
for longer prediction tasks. The integration of both positional
encodings (last row) significantly surpasses using either encoding
alone (second row and third row). On top of spatial encoding
cooperating with temporal encoding offers more noticeable perfor-
mance benefits than without temporal encoding’s help. The ’sin’
notation in the fourth row represents two-dimensional sinusoidal
absolute positional encoding, leading to reduced efficacy. The
results reveal the superiority of relative positional relationships
over absolute ones across spatial and temporal dimensions. In the
fifth row, while maintaining our spatial positional encoding, we
adopt an ALiBi [44] variant as temporal positional encoding which
calculates absolute values for temporal relative distances without
the standard ALiBi’s attention mask. Our approach to temporal
positional encoding, differentiating past from future steps, demon-
strates a slight improvement over the undirected ALiBi variant.

4.4.4 Control Conditions
Our control condition module involves three key elements: shape
codes, target state, and the fusion strategy. In Sec 4.4.2, the effec-
tiveness of shape codes has been verified. Herein, we evaluate the
critical role of the target state and the effectiveness of our fusion
approach. we first remove the target state from the input, thereby
limiting the network’s awareness to only the tooth source state
and omitting the desired aligned poses. The second row in Table 8
shows that the lack of the target state’s guidance significantly
deteriorates the predictive accuracy of the network. Conversely,
incorporating the target state narrows down the solution space,
resulting in more plausible and precise outcomes. To fuse into our
Staging Transformer, we do not merely concatenate the control
conditions to each tooth’s pose vector at each time step. Instead,
we transform and place them at the forefront of the sequence. This
strategy enables the control conditions to interact with other tokens
and reduces the redundant features. The third row corroborates our
fusion strategy’s advantage over direct concatenation.

4.5 User Study
We organize a user study to evaluate the quality of our results. We
randomly selected 18 orthodontic staging sequences from the test
set and generated a group of predictions by our networks. These
random cases with lengths ranging from 28 to 80 include scenarios
with tooth extraction and model missing. We randomized the order
of presentation for each case’s prediction and clinical reference
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TABLE 4
Ablation of Attention Mechanism

Attention Modules L2P L2Q MPE(mm) MRE(◦)

MHSAspace MHSAtime 5 10 20 30 5 10 20 30 5 10 20 30 5 10 20 30

0.74 1.07 1.72 2.29 0.10 0.15 0.24 0.31 0.22 0.39 0.52 0.73 1.41 2.17 3.59 4.80
✓ 0.64 0.85 1.23 1.41 0.09 0.13 0.18 0.19 0.20 0.25 0.37 0.44 1.26 1.82 2.59 2.74

✓ 0.78 1.00 1.55 2.08 0.13 0.16 0.23 0.29 0.22 0.28 0.45 0.64 1.72 2.26 3.43 4.53
✓ ✓ 0.420.420.42 0.620.620.62 0.880.880.88 1.001.001.00 0.070.070.07 0.100.100.10 0.140.140.14 0.150.150.15 0.110.110.11 0.170.170.17 0.240.240.24 0.280.280.28 0.960.960.96 1.421.421.42 1.891.891.89 1.961.961.96

TABLE 5
Ablation of Tooth Shape Encoding

L2P L2Q MPE(mm) MRE(◦)

5 10 20 30 5 10 20 30 5 10 20 30 5 10 20 30

Tooth Shape
Encoder

PoinTr 0.420.420.42 0.620.620.62 0.880.880.88 1.001.001.00 0.070.070.07 0.100.100.10 0.140.140.14 0.150.150.15 0.110.110.11 0.170.170.17 0.240.240.24 0.280.280.28 0.960.960.96 1.421.421.42 1.891.891.89 1.961.961.96
SnowflakeNet 0.44 0.64 0.89 1.01 0.070.070.07 0.11 0.140.140.14 0.150.150.15 0.13 0.170.170.17 0.25 0.29 1.01 1.45 1.93 2.01

FoldingNet 0.45 0.64 0.89 1.001.001.00 0.070.070.07 0.11 0.140.140.14 0.150.150.15 0.12 0.170.170.17 0.25 0.280.280.28 0.960.960.96 1.44 1.93 2.00

w/o tooth shape encoder 0.43 0.63 0.89 1.01 0.070.070.07 0.11 0.15 0.16 0.12 0.170.170.17 0.25 0.29 0.97 1.45 1.95 2.03

TABLE 6
Ablation of Tooth Shape Encoding without Spatial Attention

L2P L2Q MPE(mm) MRE(◦)

5 10 20 30 5 10 20 30 5 10 20 30 5 10 20 30

Tooth Shape
Encoder

PoinTr 0.64 0.850.850.85 1.231.231.23 1.411.411.41 0.09 0.130.130.13 0.180.180.18 0.190.190.19 0.20 0.250.250.25 0.370.370.37 0.440.440.44 1.26 1.821.821.82 2.592.592.59 2.742.742.74
SnowflakeNet 0.610.610.61 0.86 1.28 1.43 0.080.080.08 0.130.130.13 0.180.180.18 0.20 0.190.190.19 0.26 0.39 0.45 1.221.221.22 1.86 2.67 2.85

FoldingNet 0.71 0.850.850.85 1.25 1.43 0.09 0.130.130.13 0.180.180.18 0.20 0.22 0.250.250.25 0.38 0.45 1.25 1.821.821.82 2.62 2.76

w/o tooth shape encoder 0.81 0.97 1.31 1.51 0.10 0.15 0.19 0.21 0.28 0.32 0.44 0.52 1.49 2.02 2.79 2.95

TABLE 7
Ablation of Positional Encoding

Positional Encodings L2P L2Q MPE(mm) MRE(◦)

Bspace Btime 5 10 20 30 5 10 20 30 5 10 20 30 5 10 20 30

0.78 0.88 1.34 1.69 0.09 0.14 0.20 0.24 0.22 0.24 0.38 0.50 1.24 1.82 2.82 3.37
✓ 0.64 0.85 1.32 1.66 0.09 0.13 0.20 0.23 0.20 0.23 0.38 0.49 1.18 1.80 2.76 3.26

✓ 0.54 0.69 0.96 1.08 0.08 0.11 0.15 0.16 0.15 0.18 0.26 0.30 1.02 1.51 2.04 2.11
sin sin 1.08 0.67 0.89 1.01 0.10 0.11 0.140.140.14 0.150.150.15 0.40 0.21 0.27 0.31 1.58 1.50 1.97 2.05
✓ ALiBi variant [44] 0.44 0.64 0.91 1.02 0.070.070.07 0.11 0.140.140.14 0.150.150.15 0.12 0.170.170.17 0.25 0.29 0.960.960.96 1.43 1.93 2.00
✓ ✓ 0.420.420.42 0.620.620.62 0.880.880.88 1.001.001.00 0.070.070.07 0.100.100.10 0.140.140.14 0.150.150.15 0.110.110.11 0.170.170.17 0.240.240.24 0.280.280.28 0.960.960.96 1.421.421.42 1.891.891.89 1.961.961.96

TABLE 8
Ablation of Control Conditions

L2P L2Q MPE(mm) MRE(◦)

5 10 20 30 5 10 20 30 5 10 20 30 5 10 20 30

w/ xtgt 0.420.420.42 0.620.620.62 0.880.880.88 1.001.001.00 0.070.070.07 0.100.100.10 0.140.140.14 0.150.150.15 0.110.110.11 0.170.170.17 0.240.240.24 0.280.280.28 0.960.960.96 1.421.421.42 1.891.891.89 1.961.961.96
w/o xtgt 0.52 0.84 1.34 1.72 0.08 0.13 0.20 0.24 0.15 0.24 0.40 0.55 1.14 1.92 3.16 3.93

direct concatenation 0.48 0.78 1.26 1.60 0.08 0.13 0.19 0.22 0.13 0.21 0.36 0.48 1.08 1.71 2.67 3.20
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Fig. 9. User Study Results. (a) The user preference for the prediction
results versus the clinical reference. (b) The confidence ratings that
users give to their selections.

pathway. We invited 9 professional orthodontists to compare and
select the better one between the prediction and clinical reference
pathways for each case. As shown in Figure 9(a), 37.0% of ratings
show that participants favor the results generated by our network,
and 30.2% think our results are equal to the reference. To evaluate
the gap between the predicted results and reference pathways,
we also asked the participants to score the confidence of each
selection on a scale of 0 to 3. A score of 3 indicates that the
selected one is undoubtedly better than the other, while a score of
0 indicates that it is difficult to judge which is better. Finally, we
combine the scores with the selections, setting the signs of scores
to negative if the orthodontists prefer the reference pathway. As
shown in Figure 9(b), professional orthodontists find it hard to
distinguish between our staging results and the clinical reference
in many cases. The weighted scores are averaged and normalized
to the range of [-1,1], with 1 indicating that our results are better
than the clinical reference pathways and 0 indicating equal quality.
Our final score is 0.03, which demonstrates the ability of our
method to generate reliable results once again.

5 LIMITATIONS AND FUTURE WORK

Here, we address several limitations inherent in our methodology.
Firstly, the total length of the staging predicted iteratively may
not perfectly align with the clinical reference length. Our iterative
approach, aimed at approximating the target state by predicting
intermediate steps, concludes predictions based on a manually set
threshold. However, this threshold might not universally apply,
leading to discrepancies in cases where the reference paths involve
large step-wise movements and cease before meeting the thresh-
old. Consequently, our results may involve more steps in such
scenarios. Additionally, our method typically moves teeth shorter
distances directly towards the target, minimizing excessive back-
and-forth movements, in contrast to the reference paths observed
in complex scenarios requiring re-adjustment. Notably, in our user
study, orthodontists expressed a preference for the results provided
by our approach in such cases. Secondly, we have observed
instances of teleportation and stalling artifacts, albeit in a minority
of cases. To enable parallel computation during training, we extend
shorter sequences by repeating the last step. This approach may
inadvertently lead the network to prematurely halt new movements
if it perceives the current state as close to the target but not meeting
the termination criteria. The absence of precise time-to-arrival
further compounds the emergence of these artifacts. Thirdly, while

our model learns from reference paths and demonstrates robust-
ness against collisions, it falls short of achieving collision-free
outcomes. This limitation arises from the exclusion of physical
collision losses, which penalize tooth-to-tooth contacts, from the
training process due to their high computational demand. Future
endeavors will explore the integration of explicit collision con-
straints to enhance avoidance capabilities. Lastly, orthodontic stag-
ing necessitates a comprehensive consideration of various factors
such as tooth morphology, the relationship between tooth roots and
the alveolar bone, and oral health. However, our current method
overlooks tooth roots by relying solely on crown morphology
derived from oral scans, potentially jeopardizing tooth stability.
Future research endeavors will focus on integrating Cone Beam
Computed Tomography (CBCT) assessments to achieve a more
comprehensive understanding of tooth root conditions.

6 CONCLUSION

In this paper, we propose the first Transformer-based method
for orthodontic staging in an iterative manner. By mirroring
real-life treatment scenarios through short-term forecasting, our
method allows for dynamic adjustments to orthodontic staging
and embraces the complexity and multiple potential outcomes.
We employ a Transformer to predict tooth movements in short
steps and generate a full staging sequence through an iterative
process. Our Transformer integrates both spatial and temporal
attention mechanisms enhanced with relative positional encodings
to accurately model the intricate dynamics of tooth interactions.
To enable a more effective utilization of the tooth’s morphological
features, we extract shape codes from the raw 3D teeth point
clouds and inject them into the transformer. Extensive experiments
and a user study demonstrate that our method can generate staging
sequences comparable with those planned by orthodontists.
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