
Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 91

A deep learning approach to the classification of

3D CAD models*

Fei-wei QIN, Lu-ye LI, Shu-ming GAO‡, Xiao-ling YANG, Xiang CHEN
(State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310058, China)

E-mail: qinfeiwei@zjucadcg.cn; {liluye, smgao, xchen}@cad.zju.edu.cn; sunny_aday@163.com

Received July 9, 2013; Revision accepted Nov. 21, 2013; Crosschecked Jan. 15, 2014

Abstract: Model classification is essential to the management and reuse of 3D CAD models. Manual model classification is
laborious and error prone. At the same time, the automatic classification methods are scarce due to the intrinsic complexity of 3D
CAD models. In this paper, we propose an automatic 3D CAD model classification approach based on deep neural networks.
According to prior knowledge of the CAD domain, features are selected and extracted from 3D CAD models first, and then pre-
processed as high dimensional input vectors for category recognition. By analogy with the thinking process of engineers, a deep
neural network classifier for 3D CAD models is constructed with the aid of deep learning techniques. To obtain an optimal solution,
multiple strategies are appropriately chosen and applied in the training phase, which makes our classifier achieve better per-
formance. We demonstrate the efficiency and effectiveness of our approach through experiments on 3D CAD model datasets.

Key words: CAD model classification, Design reuse, Machine learning, Neural network
doi:10.1631/jzus.C1300185 Document code: A CLC number: TP391.72

1 Introduction

Designers spend about 60% of their time
searching for the right information during the product
design process and 80% of their design could be cre-
ated from an existing CAD model or by modifying an
existing CAD model (Gunn, 1982). This shows that
the retrieval and reuse of CAD models are very im-
portant. However, massive and complex CAD models
generated by previous product development activities
are usually disorderly archived in enterprises, which
makes design reuse a difficult task (Bai et al., 2010).

CAD model classification plays a key role in
effective management and organization of a large
number of CAD models. Traditionally, 3D CAD
model classification is primarily achieved by a time
consuming and troublesome manual process, during

which errors often come up. Therefore, an automatic
and intelligent classification approach is of signifi-
cance. Due to the intrinsic sophistication of 3D model
classification problems (for example, the features and
parameters of models may vary significantly de-
pending on product families), no rigid rules, which
are robust and general enough, could be applied in
model category recognition. In previous works,
scholars usually tended to conquer the 3D model
classification problem by exploiting machine learning
techniques. However, constrained by the past devel-
opment of machine learning techniques (for example,
extracting distinctive features from raw 3D data is
difficult, and the widely used support vector machine
(SVM) classifier has relatively few parameters to
tune), these approaches are not mature enough to be
used in industrial production.

In this paper, we propose a deep learning ap-
proach to automatically classify 3D CAD models
according to the mechanical part catalogue. The de-
signed deep neural network classifier is based on the
latest machine learning technique, deep learning,

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

‡ Corresponding author

* Project supported by the National Natural Science Foundation of
China (Nos. 61163016 and 61173125)
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2014

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 92

which is closer to the cognitive custom of engineers
when they are conducting CAD model classification
(Bengio, 2009; Bengio et al., 2013). To the best of our
knowledge, no past research exists on how to use deep
learning techniques to train classification systems for
3D CAD models.

The contributions of this paper are summarized
as follows:

1. We have successfully applied deep learning, a
breakthrough technology in the machine learning
research community, to automatic classification of
CAD models for the first time.

2. According to characteristics of the CAD do-
main, we choose and extract corresponding key fea-
tures from 3D CAD models and preprocess them as
input vectors for category recognition.

3. Analyzing the thinking process of how engi-
neers recognize 3D CAD models, we construct an
automatic classifier based on deep neural networks.
Also, several training strategies are properly chosen
to find the optimal solution of hyper parameters in the
constructed networks, which makes the classifier
achieve better performance.

2 Related works

This research aims to classify 3D CAD models
into corresponding semantic categories. Our work has
been inspired by recent progress in several different
areas such as 3D model classification and deep
learning.

2.1 3D model classification

Due to its wide applications in a variety of areas,
3D model classification has drawn much attention in
recent years. Limited by the representation abilities of
3D shape descriptors and the development of machine
learning technologies, however, the research results
are not very satisfactory.

Some scholars aim mainly at solving engineer-
ing CAD model classification problems. Wu and Jen
(1996) presented a neural network approach to the
classification of 3D prismatic parts. In this approach,
a 3D part was modeled by the contours of its three
projected views, and then converted to input vectors
for a polygon classifier. In the experiment, 36 work-
pieces were classified in this way. However, this ap-

proach considers only the contour information of the
3D workpiece projections. The category distinguish-
ing ability of this approach is not good enough. Ip et
al. (2003) and Ip and Regli (2005a) presented a ma-
chine learning approach to the classification of me-
chanical CAD models. The enhanced shape distribu-
tion was used to convert mesh representation of CAD
models into histograms, and then the k nearest
neighbor (kNN) algorithm was chosen to classify
solid models. Parameters of the algorithm were tuned
during the training phase. The performance of the
kNN classifier was illustrated through experiments,
but the success rates were not satisfactory. Moreover,
Ip and Regli (2005b) used SVM to classify prismatic
machined and cast-then-machined parts. Four kinds
of surface curvatures were computed as input vectors
for the SVM based classifier. Experimental results
showed that the minimum curvature acquired the
highest classification accuracy. Hou et al. (2005)
presented an SVM based clustering approach to or-
ganize 3D CAD models semantically. In this ap-
proach, each input vector is a hybrid representation of
three kinds of features, including moment invariants,
geometric ratios, and principal moments, through
which the CAD model is represented from different
perspectives. During experiments 218 3D CAD
models belonging to six part families were tested, and
the overall error was 11.76%.

In addition, for general 3D shape classification,
other scholars proposed some approaches to deal with
corresponding situations. Barutcuoglu and DeCoro
(2006) presented a hierarchical shape classification
approach based on a Bayesian framework. Given a set
of independent classifiers for an arbitrary type of
input vector, the Bayesian aggregation algorithm uses
the results of these classifiers, resolves their probable
inconsistency, and produces more accurate predic-
tions. Experiments on the Princeton Shape Bench-
mark showed that the proposed approach improves
the classification accuracy of the majority of classes.
Wei et al. (2008) presented a Hopfield neural network
approach to classify 3D VRML models considering
their material colors. The appearance colors were
used as input vectors for the Hopfield neural network
classifier. Experiments on 30 VRML models showed
the effectiveness of the proposed approach. Wang et
al. (2013) proposed a new mechanism which can
automatically select the appropriate descriptors to

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 93

retrieve and classify 3D models. First, several histo-
gram based shape descriptors were calculated to form
the feature space; second, important descriptors were
selected automatically with the sparse theory; finally,
a new shape descriptor was obtained using spectral
clustering. The proposed mechanism worked well for
both complete and incomplete models. However, the
descriptors selected must be histogram based ones.

2.2 Deep learning

Deep learning makes machine learning take a
big step toward its original goal, i.e., implementing
true artificial intelligence. The deep learning ap-
proach has obtained significant breakthroughs since
2006, and also triggered a research boom in machine
learning and artificial intelligence communities. It is
about learning multiple levels of representation and
abstraction that help to make sense of data such as
images, sound, and text (Bengio, 2009). Motivations
for deep architectures are the following: insufficient
depth can hurt; the brain has a deep architecture; and
cognitive processes seem deep. Currently, no appli-
cation of the deep learning approach exists in
CAD/CAM domains, though deep learning has been
comprehensively applied to data reduction, object
recognition, image classification, etc.

Hinton and Salakhutdinov (2006) proposed a
new data dimensionality reduction approach with
deep neural networks. High-dimensional data can be
converted to low-dimensional codes by training a
multilayer neural network with a small central layer to
reconstruct high-dimensional input vectors. Hidden
layers of the networks are first pre-trained in an un-
supervised way, and then gradient descent is used to
fine-tune the weights in the neural networks. The
proposed approach has better performance than the
principal component analysis (PCA) based dimen-
sionality reduction approaches. Huang and LeCun
(2006) presented a hybrid architecture which com-
bines convolutional neural network (CNN) and SVM
to recognize generic objects. CNN is used to learn
features from the original data first, and then the
learned features are used as input vectors for training
a Gaussian-kernel SVM. Experiments on the NORB
datasets showed that the hybrid architecture obtains
lower error rates than using CNN or SVM alone.
Kavukcuoglu et al. (2010) proposed an approach of
visual feature learning in an unsupervised way.
Through convolutional training and redundancy re-

duction, multi-stage hierarchies of sparse convolu-
tional features could be learned for visual recognition
and detection. Krizhevsky et al. (2012) trained a deep
convolutional neural network to classify more than 1
million images into 1000 different classes. The deep
neural network which consists of five convolutional
layers, three fully connected layers, and a final
1000-way softmax is very large, containing more than
650 000 neurons and 60 million trainable parameters.
It achieved the lowest error rates in the ImageNet
LSVRC-2010 contest.

3 Overview of our automatic 3D CAD model
classification approach

Three-dimensional CAD model classification is
a highly intelligent activity. The engineers who clas-
sify the models manually should have rich knowledge
and experience in this domain, and need to go through
some complex thinking processes to accomplish this
work. The cognitive processes of the engineers seem
deep: Engineers organize their ideas and concepts
hierarchically; engineers learn simpler concepts and
compose them to represent more abstract ones; en-
gineers break up solutions into multiple levels of
abstraction and processing.

Since deep learning can well simulate the
thinking process of the human brain, we propose an
automatic 3D CAD model classification approach
with the aid of deep learning. The core of this ap-
proach is designing a deep neural network classifier
for 3D CAD models. Fig. 1 shows the overall work-
flow of our approach.

The pipeline of our approach mainly consists of
six steps:

1. Acquire enough sample data from real manu-
facturing enterprises, and build 3D CAD model data
sets for training, validation, and testing.

2. Analyze the representation ability of com-
monly used 3D shape descriptors, select one or a
group of them, and then extract features from CAD
models.

3. Preprocess the input pattern and generate an
input vector for the classifier.

4. Construct the deep neural network as the 3D
CAD model classifier, including designing the to-
pology of the deep architecture, allocating a certain
number of neurons to every hidden layer, and so on.

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 94

5. Train the 3D CAD model classifier and obtain

the optimal solution.
6. Evaluate the acquired classifier and apply it to

unknown 3D CAD model databases. If the classifi-
cation accuracy is low, go back to the previous steps
to retrain the classifier. Such a process is iterated until
the required classification accuracy is reached.

4 Generation of the input vector

4.1 Experimental dataset

Until now, there has been no generally accepted
benchmark for 3D CAD models. In this study, we

build our own 3D CAD model database as the test bed
for the research. All the CAD models are collected
from several mechanical manufacturing enterprises.
The models are designed by experienced engineers
with mainstream commercial CAD toolkits such as
SolidWorks, Pro/Engineer, CATIA, and UG NX.
There are totally 7464 models belonging to 28 generic
categories: gears, screws, nuts, springs, wheels, keys,
bearing houses, flanges, washers, etc. The mechanical
part catalog is used as a reference for selecting those
categories. The whole model dataset is divided into
5990 samples for training, 737 samples for validation,
and 737 samples for testing. The training set and
validation set are used to perform model selection and
hyper parameter selection, whereas the test set is used
to evaluate the final generalization error and compare
different classifiers in an unbiased way. Fig. 2 shows a
portion of the 3D models in the dataset.

4.2 Feature selection and extraction

According to the specific nature of the problem
domain, selecting features that have obvious distin-
guishable meaning is a critical step in the pipeline of
our approach. The features should be invariant to
irrelevant deformation, insensitive to noise, and very
effective for distinguishing different categories of
CAD models.

There has been much research on extracting
features from 3D models, most aiming to propose
powerful descriptors for representing raw 3D data.
The existing 3D shape descriptors are broadly classi-
fied into three categories: statistic-based, topology-
based, and view-based (Iyer et al., 2005; Bimbo and
Pala, 2006).

Construction of
experimental dataset

Start

Feature selection and
extraction

Input pattern
preprocessing

Construction of deep
network classifier

Training of deep
network classifier

End

Evaluation of deep
network classifier

Prior knowledge
in CAD domain

Fig. 1 Overall workflow of our approach

Fig. 2 Some 3D CAD models in the dataset
Each column represents a model class, and the 10 models displayed in each column are randomly selected from the
corresponding model categories

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 95

In our opinion, view-based descriptors such as
the light field descriptor (LFD) (Chen, 2003; Chen et
al., 2003) are closer to human perception as compared
to the other two categories. This is because engineers
usually open a 3D model with CAD software, rotate it
on the screen, observe it carefully from desirable
viewing angles, and then synthesize those viewing
images to obtain the semantic categories. Two 3D
models belonging to the same mechanical part cata-
logue look similar from all viewing angles. As LFD
performs best according to the test carried out by
Shilane et al. (2004), we employ it to characterize the
shape information of the 3D model.

Using LFD, features of the images need to be
extracted further after 2D images are generated from
3D models through light field projection. Candidate
image descriptors include region-based descriptors
(e.g., the Zernike moments descriptor) and con-
tour-based descriptors (e.g., the Fourier descriptor)
(Zhang and Lu, 2002). The Zernike moments de-
scriptor is derived from complex Zernike polynomials
over the unit circle (x2+y2≤1):

(,) ()exp(j),nm nmV R m (1)
(| |)/2

2

0

()!
() (1) ,

| | | |
! ! !

2 2

n m
s n s

nm
s

n s
R

n m n m
s s s

(2)

where n is the order and m is the repetition, satisfying
n−|m|=even and |m|≤n. The Zernike moments of order
n with repetition m are expressed as

1
(,) (,).

πnm nm
x y

n
A f x y V

 (3)

The Zernike moments descriptor takes into account
all the pixels within a shape region. The Fourier de-
scriptor is obtained through Fourier transform on a
shape signature function derived from boundary co-
ordinates {(xi, yi), i=1, 2, …, N}. A commonly used
shape signature function is the centroid distance
function which is given by the distance from the
boundary points to the centroid of the shape:

2 2
c c() () , 1,2,..., ,i i ir x x y y i N (4)

where

c c
1 1

1 1
, .

N N

i i
i i

x x y y
N N

 (5)

The discrete Fourier transform is then applied on ri to
obtain the coefficients:

1

1 j2π
exp , 1, 2, ..., .

N

n i
i

ni
a r n N

N N

 (6)

The Fourier descriptor captures only shape boundary
information and ignores interior information.

According to the requirement of CAD model
recognition, we think that the region information of a
3D model is more important than contour and color
information. It is also observed that the Zernike
moments descriptor outperforms the Fourier de-
scriptor through experiments on classification tasks.
Actually, as shown in Fig. 3, exploiting a hybrid de-
scriptor which integrates the Zernike moments de-
scriptor and the Fourier descriptor does not improve
notably the classification accuracy compared with
exploiting only the Zernike moments descriptor.
Therefore, in this work, the Zernike moments de-
scriptor is chosen to represent the rendered 2D images
from 3D models.

The steps of extracting features for a 3D CAD

model are as follows: (1) translate and scale the 3D
model to ensure that it could be entirely contained in
rendered images; (2) create 10 light fields for a 3D
model; (3) render images from the camera positions
of light fields, with 10 images being represented for
20 viewpoints of each light field; (4) extract the
Zernike moments descriptor from the rendered im-

Fig. 3 Comparison of convergence rates among the
different descriptors

0.25

T
ra

in
in

g
er

ro
r

ra
te

Number of epochs

0.20

0.15

0.05

0.10

0
0 200 400 600 800 1000

Zernike moments descriptor

Fourier descriptor

The hybrid descriptor

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 96

ages. These steps are more in accordance with engi-
neers’ cognitive habits.

4.3 Input pattern preprocessing

Before providing an input pattern to the deep
neural network classifier, the input signal needs to be
preprocessed (Bishop, 1995). Considering the trade-
off between the precision of shape representation and
the computational overhead, only the first 35 Zernike
moments are used. The selected LFD is transformed
into a vector which has 3500 elements. The input
vector can be described as {zmdi}, i=1, 2, …, 35,
where zmdi is the ith coefficient of the Zernike mo-
ments descriptor. Also, scaling before applying it to
deep neural networks is very important. The main
advantage of scaling is to avoid attributes in greater
numeric ranges dominating those in smaller numeric
ranges. Another advantage is to avoid numerical dif-
ficulties during the calculation. Because output values
usually depend on the activation functions, large at-
tribute values might cause numerical problems. Each
attribute of the input vector should be linearly scaled
to [−1, 1] or [0, 1]. In this work, the original values of
the input pattern are normalized to [0, 1].

5 Construction of the deep neural network
classifier

Our deep neural network classifier (Fig. 4) con-
tains five learned layers: an input layer, three hidden
layers, and an output layer. The 3D model classifica-
tion process performed by engineers usually contains
three phases: First, they need to distinguish rotational
models from non-rotational ones; second, internal and
external shape elements are identified separately;
third, auxiliary holes and gear teeth are detected.
Finally, these key features are synthesized together to
form more abstract concepts. Inspired by such a cog-
nitive process which is from shallow to deep, from
low-level to high-level, our deep neural network
classifier is designed to include three hidden layers.

The constructed deep network classifier is a
3500-28-400-56-28-1 fully connected neural network.
It takes in the 3500-dimensional input vectors, and
then more abstract features are extracted and synthe-
sized in the hidden layers. If two 3D CAD models
belonging to the same class produce feature activation

vectors with a larger Euclidean separation at the early
layers, we can say that the higher levels of neural
networks consider them to be more similar. Finally,
the output layer outputs the corresponding model
categories.

If the deep neural networks contain a large

number of trainable parameters, which have high
expression ability, they can be finely tuned to specific
training sets. In this situation, however, the testing
error rate may be unacceptable, and over-fitting oc-
curs. On the other hand, if the deep neural networks
contain a small number of trainable parameters, they
will not have enough degrees of freedom to fit the
training set well, and error rates on the validation set
and test set are still high (Bengio, 2009). Therefore, it
is rational to find a trade-off solution. In a maximum
likelihood setting, there exists an optimum value of
the number of trainable parameters that gives the best
generalization performance, corresponding to the
optimum balance between under- and over-fitting.
According to experience and experiments, we think
the optimal ratio between the amount of training data
and the number of trainable parameters is about 160:1.
Our training set contains 5990 CAD models, and
each model is represented by a 3500-dimensional
vector, so the amount of training data=3500×5990=
20 965 000. The parameter set of the whole deep
neural network classifier contains a total of 3500×28
+28+28×400+400+400×56+56+56×28+28=133 680
trainable parameters, of which 133 168 parameters are
the weights, and 512 parameters are the biases. The
ratio between the amount of training data and the
number of trainable parameters=20 965 000/133 680≈
156.8297. This is the main reason why the con-
structed deep network classifier is a 3500-28-400-
56-28-1 fully connected neural network. In our

...

...

...

...

Input
layer

First
hidden
layer

Second
hidden
layer

Third
hidden
layer

...

Output
layer

Input
vector

Output
model

categories

Fig. 4 Architecture of our deep neural network classifier

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 97

experiments, we also test the 3500-28-100-28-28-1,
3500-28-300-28-28-1, and 3500-28-300-56-28-1 neu-
ral networks. The generalization performances of
these neural networks are not as good as that of the
3500-28-400-56-28-1 neural network.

Learning optimal model parameters involves
minimizing an error (loss) function. In the case of
multi-class classification, it is very common to use the
negative log-likelihood as the error function. This is
equivalent to maximizing the likelihood of the train-
ing set Dtrain under the model parameterized by θ. The
likelihood function L is defined as follows:

train| |

() ()
train model model

1

({ , },) log((| , ,)),
D

i i

i

L D P Y c

 θ W b v W b

(7)

where θ is the set of all trainable parameters for the
3D CAD model classifier, Dtrain denotes the training
set, W refers to the weight matrices, b refers to the

bias vectors, ()
model
ic is the model category of the ith

model in the training set, and ()
model
iv is the corre-

sponding input vector of the ith 3D model in the
training set. The error function E of the deep neural
network classifier is defined as

train train({ , },) ({ , },).E D L D θ W b θ W b (8)

This error function is differentiable. The gradient

of this function over the training set can be used as a
supervised learning signal for deep learning of a 3D
model classifier. The topological structure and con-
stituent elements of the deep neural networks are
elaborated in detail in the following.

5.1 Input layer

The input layer is decided by the dimensionality
of the input vector. To deal with 3D model classifi-
cation problems, the input vector denoted by vmodel is
3500 dimensional after preprocessing. The entire
dataset is split into training set Dtrain, validation set
Dvalid, and test set Dtest. Each data set is an indexed set

of pairs () ()
model model(,),i icv where ()

model
iv is the ith training

sample in the dataset and ()
model {0,1,..., 27}ic is the

category of the ith model ()
model
iv .

5.2 Hidden layers

Three fully connected neural networks are used
as hidden layers in the constructed deep architecture.
The layers are referred to as H1, H2, and H3. H1 uses
28 neurons to generate a 28-dimensional feature
vector. It has 3500×28+28=98 028 trainable parame-
ters, about 73.33% of the whole network’s parameter
set.

(H1) (H1)
H1 H1 model(), b W vout (9)

where outH1 is the output vector of the first hidden
layer H1, W(H1)ú28×3500 is the weight matrix con-
necting the input vector to H1, b(H1)ú28 is the bias
vector, and φH1(·) is a nonlinear activation function
used in H1.

H2 uses 400 neurons to generate a 400-
dimensional feature vector. It has 28×400+400=
11 600 trainable parameters. H2 can be mathemati-
cally described as

(H2) (H2)
H2 H2 H1(). b Wout out (10)

H3 uses 56 neurons to generate a 56-dimensional
feature vector. It has 400×56+56=22 456 trainable
parameters. H3 can be mathematically described as

(H3) (H3)
HL H3 H2(), b Wout out (11)

where outHL is the output feature vector of the entire
hidden layers.

5.3 Output layer

Logistic regression is put on top of the hidden
layers as the output layer of the deep network classi-
fier. A single logistic regression layer without com-
bining multiple neural networks itself is a probabilis-
tic, linear classifier (Dreiseitl and Ohno-Machado,
2002). It is parameterized by a weight matrix WLR and
a bias vector bLR. Classification is done by projecting
data points onto a set of hyper-planes, the distance to
which reflects a class membership probability. The
logistic regression layer can be written as

pred HL LR LR

LR HL LR

LR HL LR

LR HL LR

(| , ,)

soft max ()

exp()
.

exp()

i

i i

j jj

P Y i

b

b

W b

W b

W

W

out

out

out

out

 (12)

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 98

The output of the classifier is then generated by taking
the argmax of the vector whose ith element is P(Ypred=
i|outHL, WLR, bLR). It can be computed using Eq. (13),
where the output result is denoted by Y{0, 1, …,
27}:

pred HL LR LRarg max (| , ,).iY P Y i W bout (13)

5.4 Nonlinearity and linearity

Each neuron in the deep neural networks has
nonlinearity (activation function) and linearity (affine
transformation unit). The activation functions selec-
tion according to domain knowledge and the weights
and biases initialization in linearity are very important
to improve the generalization performance of the
networks.

The applicable activation function sets should
satisfy requirements in terms of nonlinearity, satura-
bility, continuity, smoothness, and monotonicity. The
nonlinear activation functions φ(·) are generally
chosen to be sigmoidal functions such as the logistic
sigmoid function and the tanh function. The logistic
sigmoid function has the form

1

() ,
1 e a

a

 (14)

and the tanh function has the form

e e
tanh .

e e

a a

a a
a

 (15)

To thoroughly understand the influence of

various kinds of activation functions on the deep
neural networks, five different schemes are tried in
this work (Fig. 5): (1) Use the logistic sigmoid func-
tion in all the three hidden layers; (2) Use the logistic
sigmoid function in the first two hidden layers and the
tanh function in the third hidden layer; (3) Use the
logistic sigmoid function in the first hidden layer and
the tanh function in the second and third hidden layers;
(4) Use the tanh function in the first hidden layer and
the logistic sigmoid function in the second and third
hidden layers; (5) Use the tanh function in all the
three hidden layers.

In terms of training with gradient descent, the
logistic sigmoid function is much slower than the tanh

function. Therefore, the fifth scheme is selected in our
approach.

With respect to linearity of neurons in the

hidden layers, one key problem that needs to be
considered is weights initialization. With large ini-
tial weights, deep networks typically find poor local
minima; with small initial weights, the gradients in
the early layers are tiny, making it infeasible to train
deep networks with many hidden layers. In this
study, the initial values for the weights of a hidden
layer Hi are uniformly sampled from a symmetric
interval that depends on the activation functions. For
the logistic sigmoid function, the interval is

1 14 6 / (| | | |), 4 6 / (| | | |) ,i i i iH H H H
 where

|Hi| is the number of computational units in the
ith layer. For the tanh function, the interval is

1 16 / (| | | |), 6 / (| | | |) .i i i iH H H H
 This

initialization ensures that, early in the training, each
neuron operates in a regime of its activation function
where information (function signals and error signals)
can be easily propagated both forward (activations
flowing from inputs to outputs) and backward (gra-
dients flowing from outputs to inputs) (Glorot and
Bengio, 2010).

6 Training of the classifier

In essence, training a deep network classifier can
be regarded as solving a non-convex optimization
problem, because the error function is no longer a

Fig. 5 Comparison of convergence rates among the
different nonlinear functions

0.5

T
ra

in
in

g
er

ro
r

ra
te

Number of epochs

0.4

0.3

0.1

0.2

0
0 200 400 600 800 1000

Logistic-logistic-logistic

Logistic-logistic-tanh

Logistic-tanh-tanh

tanh-logistic-logistic

tanh-tanh-tanh

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 99

convex function of the model parameters. Hence,
applying multiple practical strategies to the training
process is needed (Larochelle et al., 2009). We de-
scribe some effective strategies adopted in the train-
ing phase below. Sections 6.1–6.4 are arranged ac-
cording to our estimation of their importance, with the
most important first. Choosing proper learning rates
and training protocols makes learned hyper parame-
ters approximate the optimal solution as far as possi-
ble; the early stopping method and ‘weight decay’ are
effective ways to prevent over-fitting (Haykin, 2008).

6.1 Learning rate

A small learning rate is chosen to avoid oscilla-
tions, and we use an equal learning rate for all layers.
The learning rate η is initialized to 0.13. The largest
number of training epochs is set to 2000. The learning
rate is tuned linearly as the training process proceeds,
by making η=η−0.01 for every one hundred epochs
and ends if η≤0.02 (Fang et al., 2005).

6.2 Training protocol

The two most useful training protocols are batch
training (steepest gradient descent) and stochastic
gradient descent. The batch training protocol uses the
whole data set all at once. At each step the weight
matrix is moved toward the direction of the greatest
decrease rate of the error function; thus, it is also
known as the steepest gradient descent. A stochastic
gradient descent makes an update to the weight vector
based on one data point at a time. This update is re-
peated by cycling through the data either in sequence
or by selecting data points randomly with replace-
ment. The latter handles redundancy in the data much
more efficiently. In a stochastic gradient descent,
however, once weights update may decrease errors on
one single pattern, with increasing the total errors on
the entire training dataset (Duda et al., 2001).

The variant protocol used in this work for deep
learning is an intermediate scenario in which the up-
dates are based on mini-batches of data points (Ran-
zato et al., 2010; Ngiam et al., 2011; Bordes et al.,
2014). Mini-batch works identically to stochastic
gradient descent, except that more than one training
sample is used to make each estimate of the gradient.
This trade-off reduces variance in the estimate of the
gradient, and often makes better use of the hierar-
chical memory organization in modern computers.

There are no definite rules to choose the
mini-batch size S. An optimal S is deep networks-,
datasets-, and hardware-dependent, varying from two
to thousands. In this work, the mini-batch size S is set
to 10 to train the proposed deep network classifier for
3D CAD models; if S is set to 500, the generalization
performance of the trained classifier degrades.

6.3 Early stopping method

Splitting the training samples into the training
set used for gradient descent and the validation set
could combat over-fitting by using the early stopping
method. The early stopping method is applied by
monitoring the model’s performance on the validation
set. The training is stopped periodically, and the deep
neural networks are tested on the validation set after
each training cycle (Prechelt, 1998; Yao et al., 2007).
In particular, the periodical training-followed-by-
validation process adopted in this experiment is as
follows:

After one training cycle (a certain number of
epochs), the trainable parameters (weights and biases)
are fixed. Then the validation error of each mini-batch
in the validation set can be computed.

When the validation phase is finished, another
training cycle is restarted. This loop is repeated until
an optimal solution is acquired. Algorithm 1 gives the
implementation details of the early stopping method.

6.4 Weight decay

Weight decay is a heuristic rule used to control
the complexity of deep neural networks in order to
avoid over-fitting (Reed, 1993). Weights of networks
could be classified into two groups: (1) weights which
have a large influence on the networks’ performance;
(2) weights which have a small or no influence at all
on the networks’ performance, i.e., the unnecessary
weights. Weight decay penalizes those unnecessary
weights by addition of a regularization term to the
error function. In this work, the error function in
Eq. (8) is redefined as

train train({ , },) ({ , },) (),E D E D R θ W b θ W b θ

(16)

where λ is the regularization coefficient, chosen to be
0.0001 in our experiments. If λ is set to 0.0005, the
convergence of the training process becomes slow.

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 100

The regularizer 2
2() || || ,R θ θ and ||θ||2=

| | 2

0
| |jj θ
θ

is the L2 norm of θ.

7 Experimental results

The proposed approach has been implemented
by Python. The IDE is Eclipse, and the Theano library
is used (Bergstra et al., 2010). The experiments here
are conducted using a single CPU (Intel Quad at 2.66
GHz) with 4 GB memory. After running for 1609.05
min, with 445 epochs, 266 554 iterations, the opti-
mization completes. The deep network classifier for
3D CAD models achieves a test error rate of 1.36%.
Fig. 6 shows the training process.

7.1 Quantitative evaluations

Features are extracted from every 3D model in
the database as an input pattern. As described in Sec-
tion 4.2, LFD is used for feature extraction. The av-
erage size, vertex number, polygon number, and time
used for feature extraction of each model class are
summarized in Table 1.

The error rate and average time for classification

of each 3D model category on the test set are sum-
marized in Table 2. Totally 10 models are wrongly

Table 1 The average time of extracting features

Index Category
Avg. vertex

number
Avg. poly-
gon number

Avg.
time (s)

0 Bearing house 5960.34 11 934.70 2.67

1 Distributor 8353.28 16 719.13 3.05

2 Key 172.04 342.29 0.92

3 Filter 4487.19 8972.97 1.77

4 Sleeve 6794.44 13 571.96 3.71

5 Hook wrench 224.85 445.69 0.48

6 Template 656.72 1329.86 2.87

7 Sealing element 2244.88 4376.37 2.92

8 Lifting hook 7474.63 14 947.18 1.93

9 Tensioner 4444.97 8900.17 1.05

10 Shackle 4588.53 9181.06 2.50

11 Two-end wrench 4938.35 9877.03 1.10

12 Boring bar 2218.75 4448.45 0.91

13 Chunk 1225.72 2447.45 1.85

14
Clamping

element
577.49 1080.42 1.34

15 Supporter 833.91 1669.39 3.09

16 Hydraulic part 29 875.50 59 229.79 4.16

17 Valve 6721.18 13 458.31 1.87

18 Mold 20 181.82 41 126.64 6.93

19 Gear 3228.32 6241.43 3.04

20 Washer 721.53 1412.04 1.79

21 Ball 5984.04 11 964.26 4.52

22 Nut 1349.02 2660.03 2.66

23 Screw 4550.94 9067.56 2.04

24 Spring 43 147.67 86 287.29 7.18

25 Wheel 11 956.93 23 921.55 4.44

26 Flange 4610.82 9179.13 3.02

27 Retarder 10 203.35 20 387.00 4.00

Algorithm 1 Early stopping algorithm
Input: vectors and categories of 3D CAD models in the

training/validation/test sets, max_epoch,
n_train_batches, params (W’s and b’s) in networks,
patience, improvement_threshold,
validation_frequency.

Output: best_validation_losses, best_iter, best_params.
1 for epoch ← 1 to max_epoch do
2 for minibatch_index ← 0 to n_train_batches−1 do
3 Modify W, b, and iter;
4 if (iter+1) % validation_frequency == 0 then
5 Calculate validation_losses;
6 if validation_losses < best_validation_losses then
7 if validation_losses < best_validation_losses*
 improvement_threshold then
8 Update patience;
9 end
10 Update best_validation_losses, best_iter, and
 best_params;
11 Calculate test_losses;
12 end
13 end
14 if patience <= iter then
15 Return;
16 end
17 end
18 end

Fig. 6 Curves of the error rates during the training process

0.40

E
rr

or
 r

at
e

Number of epochs

0.30

0.25

0.10

0.20

0
0 200 400 600 800 1000

Training

Validation

Test

0.35

0.15

0.05

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 101

recognized in the test set. Twenty-three values of
error rates are zero. This indicates a good recognition
performance for these classes. Some classes like gears
have not performed so well. The reason could be that
the appearances of these classes vary significantly.
The number of training samples being not large
enough may be another reason. Compared with tra-
ditional classifiers such as SVM, a prominent ad-
vantage of the deep network classifier is its high speed
of recognition. The average time spent on recognition
of all the categories is only about 8.1 ms. The maxi-
mum value is 8.7 ms for recognizing sealing elements,
and the minimum value is 7.9 ms for recognizing
filters, supporters, molds, and wheels.

Some of the visual classification results of the
test 3D CAD models recognized by the deep network
classifier are shown in Fig. 7. The four columns in the
middle show some typical models that are correctly
identified by the classifier of the five categories.
Fig. 8 shows the other 23 categories that can be rec-
ognized a hundred percent.

Ten models are not correctly recognized by our
classifier. A possible explanation is that these models
vary significantly in geometry with respect to their
typical models. For example, gear_1 is wrongly rec-
ognized as a washer. Tiny thickness and large radius
of the inner hole make gear_1 very close to a washer
in terms of appearance. gear_2 is wrongly recognized
as a flange. Because gear_2 has a hollow cylinder in
its axle, it looks like a flange. screw_1 and screw_2
are wrongly recognized as sleeves. flange_1 and
flange_2 are wrongly recognized as a washer and a
gear, respectively. Another reason for the classifica-
tion error may be that the input patterns are handcraft
features extracted from samples depending on human
experience, and some information contained in raw
3D models cannot be well represented by these
handcraft features. For example, wheel_1 and
wheel_2 are wrongly recognized as sleeves. Because
humans recognize the two tires according to their
surface texture, the handcraft features adopted in this

Table 2 The error rate and average time for classification
using the Zernike moments descriptor

Index Category
Model
number

Error
number

Error
rate

Avg. time
(ms)

0 Bearing house 33 0 0 8.1

1 Distributor 22 0 0 8.1

2 Key 192 0 0 8.0

3 Filter 5 0 0 7.9

4 Sleeve 83 0 0 8.2

5 Hook wrench 4 0 0 8.3

6 Template 9 0 0 8.0

7 Sealing element 7 0 0 8.7

8 Lifting hook 14 0 0 8.1

9 Tensioner 19 0 0 8.1

10 Shackle 8 0 0 8.0

11 Two-end wrench 18 0 0 8.0

12 Boring bar 51 0 0 8.0

13 Chunk 7 0 0 8.0

14 Clamping element 9 0 0 8.4

15 Supporter 3 0 0 7.9

16 Hydraulic part 31 0 0 8.3

17 Valve 11 0 0 8.1

18 Mold 7 0 0 7.9

19 Gear 7 2 28.57% 8.0

20 Washer 22 0 0 8.0

21 Ball 23 0 0 8.1

22 Nut 30 0 0 8.1

23 Screw 80 2 2.50% 8.1

24 Spring 16 2 12.50% 8.3

25 Wheel 13 2 15.38% 7.9

26 Flange 8 2 25% 8.1

27 Retarder 5 0 0 8.2

Total 737 10 1.36% 8.1

Fig. 7 The five CAD model categories
The 10 models wrongly recognized by the classifier are listed
in the rightmost two columns. The first column gives the five
categories that cannot be recognized a hundred percent. The
four columns in the middle show some typical models that
are correctly identified by the classifier of the five categories

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 102

work fail to capture such special information.
spring_1 and spring_2 are wrongly recognized as a
sleeve and a screw, respectively. Through construct-
ing more complex deep learning models which have

more hidden layers and providing massive training
sample data to these models, the classification accu-
racy could be further improved by learning features
directly from raw 3D data.

Fig. 8 The 23 CAD model categories recognized with zero error rate
Limited by space, only four models are listed for each category (three models for the supporter)

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 103

7.2 Comparison among the different input
patterns

The input patterns are important for classifica-
tion. Besides the Zernike moments descriptor, we run
experiments with the Fourier descriptor and the hy-
brid descriptor to measure the influence of the dif-
ferent input patterns. From the perspective of classi-
fication accuracy, the Zernike moments descriptor
outperforms the Fourier descriptor. Even if the hybrid
descriptor is used which integrates the Zernike mo-
ments descriptor and the Fourier descriptor, the clas-
sification accuracy cannot be efficiently improved.
The dimensionality of the hybrid descriptor, however,
greatly increases compared with those of the other
two descriptors. The time cost is the highest for rec-
ognizing the hybrid descriptor and the lowest for
recognizing the Fourier descriptor.

The input pattern of exploiting the Fourier de-
scriptor is a 1000-dimensional vector, which can be
described as {fdj}, j=1, 2, …, 10, where fdj is the jth
coefficient. The classification results on the test set
are summarized in Table 3. Totally 20 models are
wrongly recognized in the test set. The error rate on
the entire test set is 2.71%. The average time spent on
recognition of all the categories is about 4.0 ms.

The input pattern of exploiting the hybrid de-
scriptor is a 4500-dimensional vector, which can be
described as {zmdi, fdj}, i=1, 2, …, 35, j=1, 2, …, 10,
where zmdi is the ith coefficient of the Zernike mo-
ments descriptor and fdj is the jth coefficient of the
Fourier descriptor. The classification results on the
test set are summarized in Table 4. Totally 11 models
are wrongly recognized. The error rate on the entire
test set is 1.49%. The average time spent on recogni-
tion of all the categories is about 9.5 ms.

7.3 Comparison with SVM

The constructed deep neural network classifier is
compared with traditional shallow computational
architectures such as SVM. The same training set, test
set, and input pattern are used for the SVM-based
classifier. Only the format of the input vector is
transformed to the form which SVM needs. The
format of the input vector provided for SVM is
{<label> <index1>:<value1> <index2>:<value2>…
<index3500>:<value3500>‘\n’}, where <label> is an
integer indicating the class label, and the pair
<index>:<value> gives a feature (attribute) value

with <index> being an integer starting from 1 and
<value> a real number. Indices must be in ascending
order. SVM is a commonly used shallow architecture
whose depth is two. SVM implements the ‘one-
against-one’ approach for multi-class classification.
The number of categories is 28 in our dataset; hence,
28(28−1)/2=378 classifiers are constructed and each
trains data from two classes. The radial basis function
(RBF) is chosen as the kernel function, with the best
parameter C=32, and gamma=0.001953125. Fig. 9
shows the results. The classification accuracy on the
test set achieved by using SVM is 88.47%. Experi-
ments show that the generalization performance of
SVM is poorer than those of the deep neural
networks.

Table 3 The error rate and average time for classification
using the Fourier descriptor

Index Category
Model
number

Error
number

Error
rate

Avg. time
(ms)

0 Bearing house 33 0 0 3.9

1 Distributor 22 2 9.09% 4.1

2 Key 192 0 0 3.9

3 Filter 5 1 20% 4.5

4 Sleeve 83 0 0 4.0

5 Hook wrench 4 0 0 3.9

6 Template 9 0 0 4.2

7 Sealing element 7 0 0 4.0

8 Lifting hook 14 0 0 3.9

9 Tensioner 19 0 0 3.9

10 Shackle 8 0 0 3.9

11 Two-end wrench 18 0 0 3.9

12 Boring bar 51 1 1.96% 4.1

13 Chunk 7 0 0 4.0
14 Clamping

element
9 0 0 4.1

15 Supporter 3 0 0 4.0

16 Hydraulic part 31 0 0 4.0

17 Valve 11 0 0 4.1

18 Mold 7 0 0 4.1

19 Gear 7 6 85.71% 3.8

20 Washer 22 2 9.09% 4.0

21 Ball 23 0 0 3.8

22 Nut 30 0 0 3.8

23 Screw 80 1 1.25% 4.1

24 Spring 16 0 0 3.9

25 Wheel 13 5 38.46% 3.9

26 Flange 8 2 25% 4.0

27 Retarder 5 0 0 4.3

Total 737 20 2.71% 4.0

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 104

7.4 Comparison with the existing works

We compare our approach with some previous
works (Table 5). The second column shows models
contained in the dataset, the third column shows the
total number of models in the dataset, and the fourth
column shows the total number of categories in the
dataset. The fifth column shows the features used to
describe the 3D models, the sixth column shows the
classifiers, and the average correct rates of each ap-
proach are compared in the rightmost column. Ex-
perimental results show that our approach outper-
forms the other approaches.

Table 5 Comparison of our approach and the state-of-the-art approaches

Reference Model
Total

number of
models

Total
number of
categories

Feature Classifier
Avg. correct

rate

This study 3D CAD models 7464 28 Modified LFD Deep neural
network

98.64%

Wu and Jen, 1996 3D prismatic parts 36 – Simplified skeletons Back-propagation
neural network

–

Ip et al., 2003; Ip and
Regli, 2005a

3D CAD models 85 12 Enhanced shape distribution kNN 72.30%

Ip et al., 2003; Ip and
Regli, 2005a

3D CAD models 56 4 Enhanced shape distribution kNN 66.71%

Hou et al., 2005 3D CAD models 218 6 Moments invariants,
geometric ratios, and
principal moments

SVM 88.24%

Ip and Regli, 2005b 3D CAD models 100 – Curvatures SVM 75.33%

Wei et al., 2008 3D VRML models 30 – Color Hopfield neural
network

–

Table 4 The error rate and average time for classification
using the hybrid descriptor

Index Category
Model
number

Error
number

Error
rate

Avg. time
(ms)

0 Bearing house 33 0 0 9.4
1 Distributor 22 0 0 9.5
2 Key 192 0 0 9.5
3 Filter 5 0 0 9.6
4 Sleeve 83 0 0 9.5
5 Hook wrench 4 0 0 10.5
6 Template 9 0 0 9.5
7 Sealing element 7 0 0 9.6
8 Lifting hook 14 0 0 9.5
9 Tensioner 19 0 0 9.7
10 Shackle 8 0 0 9.6
11 Two-end wrench 18 0 0 10.0
12 Boring bar 51 1 1.96% 9.4
13 Chunk 7 0 0 9.4
14 Clamping

element
9 0 0 9.3

15 Supporter 3 0 0 9.8
16 Hydraulic part 31 0 0 9.5
17 Valve 11 0 0 9.8
18 Mold 7 0 0 9.3
19 Gear 7 3 42.86% 9.5
20 Washer 22 1 4.55% 9.5
21 Ball 23 2 8.70% 9.3
22 Nut 30 2 6.67% 9.3
23 Screw 80 0 0 9.5
24 Spring 16 1 6.25% 9.7
25 Wheel 13 1 7.69% 9.8
26 Flange 8 0 0 9.8
27 Retarder 5 0 0 9.5

Total 737 11 1.49% 9.5

Fig. 9 The classification accuracy on the test set achieved
using SVM
References to color refer to the online version of this figure

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 105

8 Conclusions

In this paper, we present an automatic 3D CAD
model classification approach based on the deep
learning technique. By analogy with the main phases
of a manual classification process, a 3D model clas-
sifier is constructed based on deep neural networks.
Meanwhile, multiple training strategies are properly
selected and combined to make the classifier obtain
better generalization performance. To the best of our
knowledge, we are the first to successfully apply the
deep learning technique to 3D CAD model classifi-
cation. Experimental results are promising. The well
trained classifier achieves relatively high classifica-
tion accuracy on new 3D models. The average time
spent on model recognition is sufficiently short.

In the future, we plan to build a larger dataset
with much more CAD model categories to further
verify the feasibility and effectiveness of the pro-
posed approach and explore its diverse use in real life.

Furthermore, the light field descriptors of 3D
models are low level features selected according to
prior knowledge of the 3D CAD model classification
domain. To completely discard the handcraft features,
putting raw 3D model data as input of the deep neural
networks is another challenging research direction.

References
Bai, J., Gao, S., Tang, W., et al., 2010. Design reuse oriented

partial retrieval of CAD models. Comput.-Aided Des.,
42(12):1069-1084. [doi:10.1016/j.cad.2010.07.002]

Barutcuoglu, Z., DeCoro, C., 2006. Hierarchical shape classi-
fication using Bayesian aggregation. IEEE Int. Conf. on
Shape Modeling and Applications, p.44-48. [doi:10.1109/
SMI.2006.15]

Bengio, Y., 2009. Learning deep architectures for AI. Found.
Trends Mach. Learn., 2(1):1-127. [doi:10.1561/2200000
006]

Bengio, Y., Courville, A., Vincent, P., 2013. Representation
learning: a review and new perspectives. IEEE Trans.
Pattern Anal. Mach. Intell., 35(8):1798-1828. [doi:10.
1109/TPAMI.2013.50]

Bergstra, J., Breuleux, O., Bastien, F., et al., 2010. Theano: a
CPU and GPU math compiler in Python. Proc. 9th Python
in Science Conf., p.1-7.

Bimbo, A.D., Pala, P., 2006. Content-based retrieval of 3D
models. ACM Trans. Multim. Comput. Commun. Appl.,
2(1):20-43. [doi:10.1145/1126004.1126006]

Bishop, C.M., 1995. Neural Networks for Pattern Recognition.
Oxford University Press, Oxford.

Bordes, A., Glorot, X., Weston, J., et al., 2014. A semantic
matching energy function for learning with multi-

relational data. Mach. Learn., 94(2):233-259. [doi:10.
1007/s10994-013-5363-6]

Chen, D., 2003. Three-Dimensional Model Shape Description
and Retrieval Based on Light Field Descriptors. PhD
Thesis, National Taiwan University, Taiwan.

Chen, D., Tian, X., Shen, Y., et al., 2003. On visual similarity
based 3D model retrieval. Comput. Graph. Forum,
22(3):223-232. [doi:10.1111/1467-8659.00669]

Dreiseitl, S., Ohno-Machado, L., 2002. Logistic regression and
artificial neural network classification models: a meth-
odology review. J. Biomed. Inform., 35(5):352-359.
[doi:10.1016/S1532-0464(03)00034-0]

Duda, R.O., Hart, P.E., Stork, D.G., 2001. Pattern Classifica-
tion (2nd Ed.). John Wiley & Sons, New York.

Fang, X., Luo, H., Tang, J., 2005. Structural damage detection
using neural network with learning rate improvement.
Comput. & Struct., 83(25-26):2150-2161. [doi:10.1016/j.
compstruc.2005.02.029]

Glorot, X., Bengio, Y., 2010. Understanding the difficulty of
training deep feedforward neural networks. Proc. Int.
Conf. on Artificial Intelligence and Statistics, p.249-256.

Gunn, T.G., 1982. The mechanization of design and manufac-
turing. Sci. Am., 247:114-130. [doi:10.1038/scientifica
merican0982-114]

Haykin, S., 2008. Neural Networks and Learning Machines
(3rd Ed.). Prentice Hall, New York.

Hinton, G.E., Salakhutdinov, R.R., 2006. Reducing the di-
mensionality of data with neural networks. Science,
313(5786):504-507. [doi:10.1126/science.1127647]

Hou, S., Lou, K., Ramani, K., 2005. SVM-based semantic
clustering and retrieval of a 3D model database. Comput.
Aided Des. Appl., 2(1-4):155-164.

Huang, F.J., LeCun, Y., 2006. Large-scale learning with SVM
and convolutional nets for generic object categorization.
IEEE Computer Society Conf. on Computer Vision and
Pattern Recognition, p.284-291. [doi:10.1109/CVPR.
2006.164]

Ip, C.Y., Regli, W.C., 2005a. Content-based classification of
CAD models with supervised learning. Comput. Aided
Des. Appl., 2(5):609-617.

Ip, C.Y., Regli, W.C., 2005b. Manufacturing classification of
CAD models using curvature and SVMs. Int. Conf. on
Shape Modeling and Applications, p.361-365. [doi:10.
1109/SMI.2005.27]

Ip, C.Y., Regli, W.C., Sieger, L., et al., 2003. Automated
learning of model classifications. Proc. 8th ACM Symp.
on Solid Modeling and Applications, p.322-327. [doi:10.
1145/781606.781659]

Iyer, N., Jayanti, S., Lou, K., et al., 2005. Three-dimensional
shape searching: state-of-the-art review and future trends.
Comput.-Aided Des., 37(5):509-530. [doi:10.1016/j.cad.
2004.07.002]

Kavukcuoglu, K., Sermanet, P., Boureau, Y., et al., 2010.
Learning convolutional feature hierarchies for visual
recognition. Proc. 24th Annual Conf. on Neural

Qin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):91-106 106

Information Processing Systems, p.1090-1098.
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet

classification with deep convolutional neural networks.
Proc. 26th Annual Conf. on Neural Information Process-
ing Systems, p.1106-1114.

Larochelle, H., Bengio, Y., Louradour, J., et al., 2009. Ex-
ploring strategies for training deep neural networks. J.
Mach. Learn. Res., 10(1):1-40.

Ngiam, J., Chen, Z., Koh, P.W., et al., 2011. Learning deep
energy models. Proc. 28th Int. Conf. on Machine Learn-
ing, p.1105-1112.

Prechelt, L., 1998. Automatic early stopping using cross vali-
dation: quantifying the criteria. Neur. Networks, 11(4):
761-767. [doi:10.1016/S0893-6080(98)00010-0]

Ranzato, M.A., Mnih, V., Hinton, G.E., 2010. Generating more
realistic images using gated MRF’s. Proc. 24th Annual
Conference on Neural Information Processing Systems,
p.2002-2010.

Reed, R., 1993. Pruning algorithms—a survey. IEEE Trans.
Neur. Networks, 4(5):740-747. [doi:10.1109/72.248452]

Shilane, P., Min, P., Kazhdan, M., et al., 2004. The Princeton
Shape Benchmark. Proc. Conf. on Shape Modeling Ap-
plications, p.167-178. [doi:10.1109/SMI.2004.1314504]

Wang, W., Liu, X., Liu, L., 2013. Shape matching and retrieval
based on multiple feature descriptors. Comput. Aided
Draft. Des. Manuf., 23(1):60-67.

Wei, W., Yang, Y., Lin, J., et al., 2008. Color-based 3D model
classification using Hopfield neural network. Proc. Int.
Conf. on Computer Science and Software Engineering,
p.883-886. [doi:10.1109/CSSE.2008.1177]

Wu, M.C., Jen, S.R., 1996. A neural network approach to the
classification of 3D prismatic parts. Int. J. Adv. Manuf.
Technol., 11(5):325-335. [doi:10.1007/BF01845691]

Yao, Y., Rosasco, L., Caponnetto, A., 2007. On early stopping
in gradient descent learning. Constr. Approx., 26(2):289-
315. [doi:10.1007/s00365-006-0663-2]

Zhang, D., Lu, G., 2002. An integrated approach to shape
based image retrieval. Proc. 5th Asian Conf. on Computer
Vision, p.652-657.

