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Abstract:    Model classification is essential to the management and reuse of 3D CAD models. Manual model classification is 
laborious and error prone. At the same time, the automatic classification methods are scarce due to the intrinsic complexity of 3D 
CAD models. In this paper, we propose an automatic 3D CAD model classification approach based on deep neural networks. 
According to prior knowledge of the CAD domain, features are selected and extracted from 3D CAD models first, and then pre-
processed as high dimensional input vectors for category recognition. By analogy with the thinking process of engineers, a deep 
neural network classifier for 3D CAD models is constructed with the aid of deep learning techniques. To obtain an optimal solution, 
multiple strategies are appropriately chosen and applied in the training phase, which makes our classifier achieve better per-
formance. We demonstrate the efficiency and effectiveness of our approach through experiments on 3D CAD model datasets. 
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1  Introduction 
 

Designers spend about 60% of their time 
searching for the right information during the product 
design process and 80% of their design could be cre-
ated from an existing CAD model or by modifying an 
existing CAD model (Gunn, 1982). This shows that 
the retrieval and reuse of CAD models are very im-
portant. However, massive and complex CAD models 
generated by previous product development activities 
are usually disorderly archived in enterprises, which 
makes design reuse a difficult task (Bai et al., 2010). 

CAD model classification plays a key role in 
effective management and organization of a large 
number of CAD models. Traditionally, 3D CAD 
model classification is primarily achieved by a time 
consuming and troublesome manual process, during 

which errors often come up. Therefore, an automatic 
and intelligent classification approach is of signifi-
cance. Due to the intrinsic sophistication of 3D model 
classification problems (for example, the features and 
parameters of models may vary significantly de-
pending on product families), no rigid rules, which 
are robust and general enough, could be applied in 
model category recognition. In previous works, 
scholars usually tended to conquer the 3D model 
classification problem by exploiting machine learning 
techniques. However, constrained by the past devel-
opment of machine learning techniques (for example, 
extracting distinctive features from raw 3D data is 
difficult, and the widely used support vector machine 
(SVM) classifier has relatively few parameters to 
tune), these approaches are not mature enough to be 
used in industrial production. 

In this paper, we propose a deep learning ap-
proach to automatically classify 3D CAD models 
according to the mechanical part catalogue. The de-
signed deep neural network classifier is based on the 
latest machine learning technique, deep learning, 
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which is closer to the cognitive custom of engineers 
when they are conducting CAD model classification 
(Bengio, 2009; Bengio et al., 2013). To the best of our 
knowledge, no past research exists on how to use deep 
learning techniques to train classification systems for 
3D CAD models. 

The contributions of this paper are summarized 
as follows: 

1. We have successfully applied deep learning, a 
breakthrough technology in the machine learning 
research community, to automatic classification of 
CAD models for the first time. 

2. According to characteristics of the CAD do-
main, we choose and extract corresponding key fea-
tures from 3D CAD models and preprocess them as 
input vectors for category recognition. 

3. Analyzing the thinking process of how engi-
neers recognize 3D CAD models, we construct an 
automatic classifier based on deep neural networks. 
Also, several training strategies are properly chosen 
to find the optimal solution of hyper parameters in the 
constructed networks, which makes the classifier 
achieve better performance.  
 
 
2  Related works 
 

This research aims to classify 3D CAD models 
into corresponding semantic categories. Our work has 
been inspired by recent progress in several different 
areas such as 3D model classification and deep 
learning. 

2.1  3D model classification 

Due to its wide applications in a variety of areas, 
3D model classification has drawn much attention in 
recent years. Limited by the representation abilities of 
3D shape descriptors and the development of machine 
learning technologies, however, the research results 
are not very satisfactory.  

Some scholars aim mainly at solving engineer-
ing CAD model classification problems. Wu and Jen 
(1996) presented a neural network approach to the 
classification of 3D prismatic parts. In this approach, 
a 3D part was modeled by the contours of its three 
projected views, and then converted to input vectors 
for a polygon classifier. In the experiment, 36 work-
pieces were classified in this way. However, this ap-

proach considers only the contour information of the 
3D workpiece projections. The category distinguish-
ing ability of this approach is not good enough. Ip et 
al. (2003) and Ip and Regli (2005a) presented a ma-
chine learning approach to the classification of me-
chanical CAD models. The enhanced shape distribu-
tion was used to convert mesh representation of CAD 
models into histograms, and then the k nearest 
neighbor (kNN) algorithm was chosen to classify 
solid models. Parameters of the algorithm were tuned 
during the training phase. The performance of the 
kNN classifier was illustrated through experiments, 
but the success rates were not satisfactory. Moreover, 
Ip and Regli (2005b) used SVM to classify prismatic 
machined and cast-then-machined parts. Four kinds 
of surface curvatures were computed as input vectors 
for the SVM based classifier. Experimental results 
showed that the minimum curvature acquired the 
highest classification accuracy. Hou et al. (2005) 
presented an SVM based clustering approach to or-
ganize 3D CAD models semantically. In this ap-
proach, each input vector is a hybrid representation of 
three kinds of features, including moment invariants, 
geometric ratios, and principal moments, through 
which the CAD model is represented from different 
perspectives. During experiments 218 3D CAD 
models belonging to six part families were tested, and 
the overall error was 11.76%.  

In addition, for general 3D shape classification, 
other scholars proposed some approaches to deal with 
corresponding situations. Barutcuoglu and DeCoro 
(2006) presented a hierarchical shape classification 
approach based on a Bayesian framework. Given a set 
of independent classifiers for an arbitrary type of 
input vector, the Bayesian aggregation algorithm uses 
the results of these classifiers, resolves their probable 
inconsistency, and produces more accurate predic-
tions. Experiments on the Princeton Shape Bench-
mark showed that the proposed approach improves 
the classification accuracy of the majority of classes. 
Wei et al. (2008) presented a Hopfield neural network 
approach to classify 3D VRML models considering 
their material colors. The appearance colors were 
used as input vectors for the Hopfield neural network 
classifier. Experiments on 30 VRML models showed 
the effectiveness of the proposed approach. Wang et 
al. (2013) proposed a new mechanism which can 
automatically select the appropriate descriptors to 
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retrieve and classify 3D models. First, several histo-
gram based shape descriptors were calculated to form 
the feature space; second, important descriptors were 
selected automatically with the sparse theory; finally, 
a new shape descriptor was obtained using spectral 
clustering. The proposed mechanism worked well for 
both complete and incomplete models. However, the 
descriptors selected must be histogram based ones. 

2.2  Deep learning 

Deep learning makes machine learning take a 
big step toward its original goal, i.e., implementing 
true artificial intelligence. The deep learning ap-
proach has obtained significant breakthroughs since 
2006, and also triggered a research boom in machine 
learning and artificial intelligence communities. It is 
about learning multiple levels of representation and 
abstraction that help to make sense of data such as 
images, sound, and text (Bengio, 2009). Motivations 
for deep architectures are the following: insufficient 
depth can hurt; the brain has a deep architecture; and 
cognitive processes seem deep. Currently, no appli-
cation of the deep learning approach exists in 
CAD/CAM domains, though deep learning has been 
comprehensively applied to data reduction, object 
recognition, image classification, etc.  

Hinton and Salakhutdinov (2006) proposed a 
new data dimensionality reduction approach with 
deep neural networks. High-dimensional data can be 
converted to low-dimensional codes by training a 
multilayer neural network with a small central layer to 
reconstruct high-dimensional input vectors. Hidden 
layers of the networks are first pre-trained in an un-
supervised way, and then gradient descent is used to 
fine-tune the weights in the neural networks. The 
proposed approach has better performance than the 
principal component analysis (PCA) based dimen-
sionality reduction approaches. Huang and LeCun 
(2006) presented a hybrid architecture which com-
bines convolutional neural network (CNN) and SVM 
to recognize generic objects. CNN is used to learn 
features from the original data first, and then the 
learned features are used as input vectors for training 
a Gaussian-kernel SVM. Experiments on the NORB 
datasets showed that the hybrid architecture obtains 
lower error rates than using CNN or SVM alone. 
Kavukcuoglu et al. (2010) proposed an approach of 
visual feature learning in an unsupervised way. 
Through convolutional training and redundancy re-

duction, multi-stage hierarchies of sparse convolu-
tional features could be learned for visual recognition 
and detection. Krizhevsky et al. (2012) trained a deep 
convolutional neural network to classify more than 1 
million images into 1000 different classes. The deep 
neural network which consists of five convolutional 
layers, three fully connected layers, and a final 
1000-way softmax is very large, containing more than 
650 000 neurons and 60 million trainable parameters. 
It achieved the lowest error rates in the ImageNet 
LSVRC-2010 contest.  
 
 

3  Overview of our automatic 3D CAD model 
classification approach 
 

Three-dimensional CAD model classification is 
a highly intelligent activity. The engineers who clas-
sify the models manually should have rich knowledge 
and experience in this domain, and need to go through 
some complex thinking processes to accomplish this 
work. The cognitive processes of the engineers seem 
deep: Engineers organize their ideas and concepts 
hierarchically; engineers learn simpler concepts and 
compose them to represent more abstract ones; en-
gineers break up solutions into multiple levels of 
abstraction and processing. 

Since deep learning can well simulate the 
thinking process of the human brain, we propose an 
automatic 3D CAD model classification approach 
with the aid of deep learning. The core of this ap-
proach is designing a deep neural network classifier 
for 3D CAD models. Fig. 1 shows the overall work-
flow of our approach.  

The pipeline of our approach mainly consists of 
six steps:  

1. Acquire enough sample data from real manu-
facturing enterprises, and build 3D CAD model data 
sets for training, validation, and testing. 

2. Analyze the representation ability of com-
monly used 3D shape descriptors, select one or a 
group of them, and then extract features from CAD 
models. 

3. Preprocess the input pattern and generate an 
input vector for the classifier. 

4. Construct the deep neural network as the 3D 
CAD model classifier, including designing the to-
pology of the deep architecture, allocating a certain 
number of neurons to every hidden layer, and so on. 
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5. Train the 3D CAD model classifier and obtain 

the optimal solution. 
6. Evaluate the acquired classifier and apply it to 

unknown 3D CAD model databases. If the classifi-
cation accuracy is low, go back to the previous steps 
to retrain the classifier. Such a process is iterated until 
the required classification accuracy is reached. 
 
 
4  Generation of the input vector 

4.1  Experimental dataset 

Until now, there has been no generally accepted 
benchmark for 3D CAD models. In this study, we  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

build our own 3D CAD model database as the test bed 
for the research. All the CAD models are collected 
from several mechanical manufacturing enterprises. 
The models are designed by experienced engineers 
with mainstream commercial CAD toolkits such as 
SolidWorks, Pro/Engineer, CATIA, and UG NX. 
There are totally 7464 models belonging to 28 generic 
categories: gears, screws, nuts, springs, wheels, keys, 
bearing houses, flanges, washers, etc. The mechanical 
part catalog is used as a reference for selecting those 
categories. The whole model dataset is divided into 
5990 samples for training, 737 samples for validation, 
and 737 samples for testing. The training set and 
validation set are used to perform model selection and 
hyper parameter selection, whereas the test set is used 
to evaluate the final generalization error and compare 
different classifiers in an unbiased way. Fig. 2 shows a 
portion of the 3D models in the dataset.  

4.2  Feature selection and extraction 

According to the specific nature of the problem 
domain, selecting features that have obvious distin-
guishable meaning is a critical step in the pipeline of 
our approach. The features should be invariant to 
irrelevant deformation, insensitive to noise, and very 
effective for distinguishing different categories of 
CAD models. 

There has been much research on extracting 
features from 3D models, most aiming to propose 
powerful descriptors for representing raw 3D data. 
The existing 3D shape descriptors are broadly classi-
fied into three categories: statistic-based, topology- 
based, and view-based (Iyer et al., 2005; Bimbo and 
Pala, 2006).  
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Evaluation of deep 
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Fig. 1  Overall workflow of our approach

Fig. 2  Some 3D CAD models in the dataset
Each column represents a model class, and the 10 models displayed in each column are randomly selected from the 
corresponding model categories 
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In our opinion, view-based descriptors such as 
the light field descriptor (LFD) (Chen, 2003; Chen et 
al., 2003) are closer to human perception as compared 
to the other two categories. This is because engineers 
usually open a 3D model with CAD software, rotate it 
on the screen, observe it carefully from desirable 
viewing angles, and then synthesize those viewing 
images to obtain the semantic categories. Two 3D 
models belonging to the same mechanical part cata-
logue look similar from all viewing angles. As LFD 
performs best according to the test carried out by 
Shilane et al. (2004), we employ it to characterize the 
shape information of the 3D model. 

Using LFD, features of the images need to be 
extracted further after 2D images are generated from 
3D models through light field projection. Candidate 
image descriptors include region-based descriptors 
(e.g., the Zernike moments descriptor) and con-
tour-based descriptors (e.g., the Fourier descriptor) 
(Zhang and Lu, 2002). The Zernike moments de-
scriptor is derived from complex Zernike polynomials 
over the unit circle (x2+y2≤1): 
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where n is the order and m is the repetition, satisfying 
n−|m|=even and |m|≤n. The Zernike moments of order 
n with repetition m are expressed as 
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The Zernike moments descriptor takes into account 
all the pixels within a shape region. The Fourier de-
scriptor is obtained through Fourier transform on a 
shape signature function derived from boundary co-
ordinates {(xi, yi), i=1, 2, …, N}. A commonly used 
shape signature function is the centroid distance 
function which is given by the distance from the 
boundary points to the centroid of the shape: 
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The discrete Fourier transform is then applied on ri to 
obtain the coefficients: 
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The Fourier descriptor captures only shape boundary 
information and ignores interior information. 

According to the requirement of CAD model 
recognition, we think that the region information of a 
3D model is more important than contour and color 
information. It is also observed that the Zernike 
moments descriptor outperforms the Fourier de-
scriptor through experiments on classification tasks. 
Actually, as shown in Fig. 3, exploiting a hybrid de-
scriptor which integrates the Zernike moments de-
scriptor and the Fourier descriptor does not improve 
notably the classification accuracy compared with 
exploiting only the Zernike moments descriptor. 
Therefore, in this work, the Zernike moments de-
scriptor is chosen to represent the rendered 2D images 
from 3D models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The steps of extracting features for a 3D CAD 

model are as follows: (1) translate and scale the 3D 
model to ensure that it could be entirely contained in 
rendered images; (2) create 10 light fields for a 3D 
model; (3) render images from the camera positions 
of light fields, with 10 images being represented for 
20 viewpoints of each light field; (4) extract the 
Zernike moments descriptor from the rendered im-

Fig. 3  Comparison of convergence rates among the 
different descriptors 
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ages. These steps are more in accordance with engi-
neers’ cognitive habits. 

4.3  Input pattern preprocessing 

Before providing an input pattern to the deep 
neural network classifier, the input signal needs to be 
preprocessed (Bishop, 1995). Considering the trade- 
off between the precision of shape representation and 
the computational overhead, only the first 35 Zernike 
moments are used. The selected LFD is transformed 
into a vector which has 3500 elements. The input 
vector can be described as {zmdi}, i=1, 2, …, 35, 
where zmdi is the ith coefficient of the Zernike mo-
ments descriptor. Also, scaling before applying it to 
deep neural networks is very important. The main 
advantage of scaling is to avoid attributes in greater 
numeric ranges dominating those in smaller numeric 
ranges. Another advantage is to avoid numerical dif-
ficulties during the calculation. Because output values 
usually depend on the activation functions, large at-
tribute values might cause numerical problems. Each 
attribute of the input vector should be linearly scaled 
to [−1, 1] or [0, 1]. In this work, the original values of 
the input pattern are normalized to [0, 1]. 
 
 
5  Construction of the deep neural network 
classifier 
 

Our deep neural network classifier (Fig. 4) con-
tains five learned layers: an input layer, three hidden 
layers, and an output layer. The 3D model classifica-
tion process performed by engineers usually contains 
three phases: First, they need to distinguish rotational 
models from non-rotational ones; second, internal and 
external shape elements are identified separately; 
third, auxiliary holes and gear teeth are detected. 
Finally, these key features are synthesized together to 
form more abstract concepts. Inspired by such a cog-
nitive process which is from shallow to deep, from 
low-level to high-level, our deep neural network 
classifier is designed to include three hidden layers. 

The constructed deep network classifier is a 
3500-28-400-56-28-1 fully connected neural network. 
It takes in the 3500-dimensional input vectors, and 
then more abstract features are extracted and synthe-
sized in the hidden layers. If two 3D CAD models 
belonging to the same class produce feature activation 

vectors with a larger Euclidean separation at the early 
layers, we can say that the higher levels of neural 
networks consider them to be more similar. Finally, 
the output layer outputs the corresponding model 
categories. 

 
 
 
 
 
 
 
 
 
 
 
 
If the deep neural networks contain a large 

number of trainable parameters, which have high 
expression ability, they can be finely tuned to specific 
training sets. In this situation, however, the testing 
error rate may be unacceptable, and over-fitting oc-
curs. On the other hand, if the deep neural networks 
contain a small number of trainable parameters, they 
will not have enough degrees of freedom to fit the 
training set well, and error rates on the validation set 
and test set are still high (Bengio, 2009). Therefore, it 
is rational to find a trade-off solution. In a maximum 
likelihood setting, there exists an optimum value of 
the number of trainable parameters that gives the best 
generalization performance, corresponding to the 
optimum balance between under- and over-fitting. 
According to experience and experiments, we think 
the optimal ratio between the amount of training data 
and the number of trainable parameters is about 160:1. 
Our training set contains 5990 CAD models, and  
each model is represented by a 3500-dimensional 
vector, so the amount of training data=3500×5990= 
20 965 000. The parameter set of the whole deep 
neural network classifier contains a total of 3500×28 
+28+28×400+400+400×56+56+56×28+28=133 680 
trainable parameters, of which 133 168 parameters are 
the weights, and 512 parameters are the biases. The 
ratio between the amount of training data and the 
number of trainable parameters=20 965 000/133 680≈ 
156.8297. This is the main reason why the con-
structed deep network classifier is a 3500-28-400- 
56-28-1 fully connected neural network. In our  
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Fig. 4  Architecture of our deep neural network classifier
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experiments, we also test the 3500-28-100-28-28-1, 
3500-28-300-28-28-1, and 3500-28-300-56-28-1 neu-
ral networks. The generalization performances of 
these neural networks are not as good as that of the 
3500-28-400-56-28-1 neural network. 

Learning optimal model parameters involves 
minimizing an error (loss) function. In the case of 
multi-class classification, it is very common to use the 
negative log-likelihood as the error function. This is 
equivalent to maximizing the likelihood of the train-
ing set Dtrain under the model parameterized by θ. The 
likelihood function L  is defined as follows: 

 
train| |
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( { , }, ) log( ( | , , )),
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i
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where θ is the set of all trainable parameters for the 
3D CAD model classifier, Dtrain denotes the training 
set, W refers to the weight matrices, b refers to the 

bias vectors, ( )
model
ic  is the model category of the ith 

model in the training set, and ( )
model
iv  is the corre-

sponding input vector of the ith 3D model in the 
training set. The error function E of the deep neural 
network classifier is defined as 
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This error function is differentiable. The gradient 

of this function over the training set can be used as a 
supervised learning signal for deep learning of a 3D 
model classifier. The topological structure and con-
stituent elements of the deep neural networks are 
elaborated in detail in the following. 

5.1  Input layer 

The input layer is decided by the dimensionality 
of the input vector. To deal with 3D model classifi-
cation problems, the input vector denoted by vmodel is 
3500 dimensional after preprocessing. The entire 
dataset is split into training set Dtrain, validation set 
Dvalid, and test set Dtest. Each data set is an indexed set 

of pairs ( ) ( )
model model( , ),i icv  where ( )

model
iv  is the ith training 

sample in the dataset and ( )
model {0,1,..., 27}ic   is the 

category of the ith model ( )
model
iv . 

5.2  Hidden layers 

Three fully connected neural networks are used 
as hidden layers in the constructed deep architecture. 
The layers are referred to as H1, H2, and H3. H1 uses 
28 neurons to generate a 28-dimensional feature 
vector. It has 3500×28+28=98 028 trainable parame-
ters, about 73.33% of the whole network’s parameter 
set.  

(H1) (H1)
H1 H1 model( ), b W vout           (9) 

 

where outH1 is the output vector of the first hidden 
layer H1, W(H1)ú28×3500 is the weight matrix con-
necting the input vector to H1, b(H1)ú28 is the bias 
vector, and φH1(·) is a nonlinear activation function 
used in H1.  

H2 uses 400 neurons to generate a 400-  
dimensional feature vector. It has 28×400+400= 
11 600 trainable parameters. H2 can be mathemati-
cally described as 
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H3 uses 56 neurons to generate a 56-dimensional 
feature vector. It has 400×56+56=22 456 trainable 
parameters. H3 can be mathematically described as 
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where outHL is the output feature vector of the entire 
hidden layers. 

5.3  Output layer 

Logistic regression is put on top of the hidden 
layers as the output layer of the deep network classi-
fier. A single logistic regression layer without com-
bining multiple neural networks itself is a probabilis-
tic, linear classifier (Dreiseitl and Ohno-Machado, 
2002). It is parameterized by a weight matrix WLR and 
a bias vector bLR. Classification is done by projecting 
data points onto a set of hyper-planes, the distance to 
which reflects a class membership probability. The 
logistic regression layer can be written as 
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The output of the classifier is then generated by taking 
the argmax of the vector whose ith element is P(Ypred= 
i|outHL, WLR, bLR). It can be computed using Eq. (13), 
where the output result is denoted by Y{0, 1, …, 
27}: 
 

pred HL LR LRarg max ( | , , ).iY P Y i  W bout     (13) 

 

5.4  Nonlinearity and linearity 

Each neuron in the deep neural networks has 
nonlinearity (activation function) and linearity (affine 
transformation unit). The activation functions selec-
tion according to domain knowledge and the weights 
and biases initialization in linearity are very important 
to improve the generalization performance of the  
networks. 

The applicable activation function sets should 
satisfy requirements in terms of nonlinearity, satura-
bility, continuity, smoothness, and monotonicity. The 
nonlinear activation functions φ(·) are generally 
chosen to be sigmoidal functions such as the logistic 
sigmoid function and the tanh function. The logistic 
sigmoid function has the form 
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and the tanh function has the form 
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To thoroughly understand the influence of 

various kinds of activation functions on the deep 
neural networks, five different schemes are tried in 
this work (Fig. 5): (1) Use the logistic sigmoid func-
tion in all the three hidden layers; (2) Use the logistic 
sigmoid function in the first two hidden layers and the 
tanh function in the third hidden layer; (3) Use the 
logistic sigmoid function in the first hidden layer and 
the tanh function in the second and third hidden layers; 
(4) Use the tanh function in the first hidden layer and 
the logistic sigmoid function in the second and third 
hidden layers; (5) Use the tanh function in all the 
three hidden layers.  

In terms of training with gradient descent, the 
logistic sigmoid function is much slower than the tanh 

function. Therefore, the fifth scheme is selected in our 
approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With respect to linearity of neurons in the 

hidden layers, one key problem that needs to be 
considered is weights initialization. With large ini-
tial weights, deep networks typically find poor local 
minima; with small initial weights, the gradients in 
the early layers are tiny, making it infeasible to train 
deep networks with many hidden layers. In this 
study, the initial values for the weights of a hidden 
layer Hi are uniformly sampled from a symmetric 
interval that depends on the activation functions. For 
the logistic sigmoid function, the interval is 

1 14 6 / (| | | |), 4 6 / (| | | |) ,i i i iH H H H 
      where 

|Hi| is the number of computational units in the  
ith layer. For the tanh function, the interval is 

1 16 / (| | | |), 6 / (| | | |) .i i i iH H H H 
      This 

initialization ensures that, early in the training, each 
neuron operates in a regime of its activation function 
where information (function signals and error signals) 
can be easily propagated both forward (activations 
flowing from inputs to outputs) and backward (gra-
dients flowing from outputs to inputs) (Glorot and 
Bengio, 2010). 

 
 

6  Training of the classifier 
 

In essence, training a deep network classifier can 
be regarded as solving a non-convex optimization 
problem, because the error function is no longer a 

Fig. 5  Comparison of convergence rates among the 
different nonlinear functions 
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convex function of the model parameters. Hence, 
applying multiple practical strategies to the training 
process is needed (Larochelle et al., 2009). We de-
scribe some effective strategies adopted in the train-
ing phase below. Sections 6.1–6.4 are arranged ac-
cording to our estimation of their importance, with the 
most important first. Choosing proper learning rates 
and training protocols makes learned hyper parame-
ters approximate the optimal solution as far as possi-
ble; the early stopping method and ‘weight decay’ are 
effective ways to prevent over-fitting (Haykin, 2008).  

6.1  Learning rate 

A small learning rate is chosen to avoid oscilla-
tions, and we use an equal learning rate for all layers. 
The learning rate η is initialized to 0.13. The largest 
number of training epochs is set to 2000. The learning 
rate is tuned linearly as the training process proceeds, 
by making η=η−0.01 for every one hundred epochs 
and ends if η≤0.02 (Fang et al., 2005). 

6.2  Training protocol 

The two most useful training protocols are batch 
training (steepest gradient descent) and stochastic 
gradient descent. The batch training protocol uses the 
whole data set all at once. At each step the weight 
matrix is moved toward the direction of the greatest 
decrease rate of the error function; thus, it is also 
known as the steepest gradient descent. A stochastic 
gradient descent makes an update to the weight vector 
based on one data point at a time. This update is re-
peated by cycling through the data either in sequence 
or by selecting data points randomly with replace-
ment. The latter handles redundancy in the data much 
more efficiently. In a stochastic gradient descent, 
however, once weights update may decrease errors on 
one single pattern, with increasing the total errors on 
the entire training dataset (Duda et al., 2001).  

The variant protocol used in this work for deep 
learning is an intermediate scenario in which the up-
dates are based on mini-batches of data points (Ran-
zato et al., 2010; Ngiam et al., 2011; Bordes et al., 
2014). Mini-batch works identically to stochastic 
gradient descent, except that more than one training 
sample is used to make each estimate of the gradient. 
This trade-off reduces variance in the estimate of the 
gradient, and often makes better use of the hierar-
chical memory organization in modern computers.  

There are no definite rules to choose the 
mini-batch size S. An optimal S  is deep networks-, 
datasets-, and hardware-dependent, varying from two 
to thousands. In this work, the mini-batch size S is set 
to 10 to train the proposed deep network classifier for 
3D CAD models; if S is set to 500, the generalization 
performance of the trained classifier degrades.  

6.3  Early stopping method 

Splitting the training samples into the training 
set used for gradient descent and the validation set 
could combat over-fitting by using the early stopping 
method. The early stopping method is applied by 
monitoring the model’s performance on the validation 
set. The training is stopped periodically, and the deep 
neural networks are tested on the validation set after 
each training cycle (Prechelt, 1998; Yao et al., 2007). 
In particular, the periodical training-followed-by- 
validation process adopted in this experiment is as 
follows: 

After one training cycle (a certain number of 
epochs), the trainable parameters (weights and biases) 
are fixed. Then the validation error of each mini-batch 
in the validation set can be computed. 

When the validation phase is finished, another 
training cycle is restarted. This loop is repeated until 
an optimal solution is acquired. Algorithm 1 gives the 
implementation details of the early stopping method.  

6.4  Weight decay 

Weight decay is a heuristic rule used to control 
the complexity of deep neural networks in order to 
avoid over-fitting (Reed, 1993). Weights of networks 
could be classified into two groups: (1) weights which 
have a large influence on the networks’ performance; 
(2) weights which have a small or no influence at all 
on the networks’ performance, i.e., the unnecessary 
weights. Weight decay penalizes those unnecessary 
weights by addition of a regularization term to the 
error function. In this work, the error function in 
Eq. (8) is redefined as 
 

train train( { , }, ) ( { , }, ) ( ),E D E D R   θ W b θ W b θ  

(16) 
 

where λ is the regularization coefficient, chosen to be 
0.0001 in our experiments. If λ is set to 0.0005, the 
convergence of the training process becomes slow. 
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The regularizer 2
2( ) || || ,R θ θ  and ||θ||2=

| | 2

0
| |jj θ
θ  

is the L2 norm of θ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7  Experimental results 
 

The proposed approach has been implemented 
by Python. The IDE is Eclipse, and the Theano library 
is used (Bergstra et al., 2010). The experiments here 
are conducted using a single CPU (Intel Quad at 2.66 
GHz) with 4 GB memory. After running for 1609.05 
min, with 445 epochs, 266 554 iterations, the opti-
mization completes. The deep network classifier for 
3D CAD models achieves a test error rate of 1.36%. 
Fig. 6 shows the training process. 

7.1  Quantitative evaluations 

Features are extracted from every 3D model in 
the database as an input pattern. As described in Sec-
tion 4.2, LFD is used for feature extraction. The av-
erage size, vertex number, polygon number, and time 
used for feature extraction of each model class are 
summarized in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The error rate and average time for classification 

of each 3D model category on the test set are sum-
marized in Table 2. Totally 10 models are wrongly 

Table 1  The average time of extracting features 

Index Category 
Avg. vertex 

number 
Avg. poly-
gon number 

Avg. 
time (s)

0 Bearing house 5960.34 11 934.70 2.67 

1 Distributor 8353.28 16 719.13 3.05 

2 Key 172.04 342.29 0.92 

3 Filter 4487.19 8972.97 1.77 

4 Sleeve 6794.44 13 571.96 3.71 

5 Hook wrench 224.85 445.69 0.48 

6 Template 656.72 1329.86 2.87 

7 Sealing element 2244.88 4376.37 2.92 

8 Lifting hook 7474.63 14 947.18 1.93 

9 Tensioner 4444.97 8900.17 1.05 

10 Shackle 4588.53 9181.06 2.50 

11 Two-end wrench 4938.35 9877.03 1.10 

12 Boring bar 2218.75 4448.45 0.91 

13 Chunk 1225.72 2447.45 1.85 

14 
Clamping  

element 
577.49 1080.42 1.34 

15 Supporter 833.91 1669.39 3.09 

16 Hydraulic part 29 875.50 59 229.79 4.16 

17 Valve 6721.18 13 458.31 1.87 

18 Mold 20 181.82 41 126.64 6.93 

19 Gear 3228.32 6241.43 3.04 

20 Washer 721.53 1412.04 1.79 

21 Ball 5984.04 11 964.26 4.52 

22 Nut 1349.02 2660.03 2.66 

23 Screw 4550.94 9067.56 2.04 

24 Spring 43 147.67 86 287.29 7.18 

25 Wheel 11 956.93 23 921.55 4.44 

26 Flange 4610.82 9179.13 3.02 

27 Retarder 10 203.35 20 387.00 4.00 

 

Algorithm 1    Early stopping algorithm 
Input: vectors and categories of 3D CAD models in the 

training/validation/test sets, max_epoch, 
n_train_batches, params (W’s and b’s) in networks, 
patience, improvement_threshold,  
validation_frequency. 

Output: best_validation_losses, best_iter, best_params. 
1  for epoch ← 1 to max_epoch do 
2     for minibatch_index ← 0 to n_train_batches−1 do 
3         Modify W, b, and iter; 
4         if (iter+1) % validation_frequency == 0 then 
5            Calculate validation_losses; 
6            if validation_losses < best_validation_losses then 
7                if validation_losses < best_validation_losses* 
                      improvement_threshold then 
8                Update patience; 
9                end 
10              Update best_validation_losses, best_iter, and 
                      best_params; 
11              Calculate test_losses; 
12          end 
13       end 
14       if patience <= iter then 
15           Return; 
16       end 
17   end 
18 end 

 

Fig. 6  Curves of the error rates during the training process
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recognized in the test set. Twenty-three values of 
error rates are zero. This indicates a good recognition 
performance for these classes. Some classes like gears 
have not performed so well. The reason could be that 
the appearances of these classes vary significantly. 
The number of training samples being not large 
enough may be another reason. Compared with tra-
ditional classifiers such as SVM, a prominent ad-
vantage of the deep network classifier is its high speed 
of recognition. The average time spent on recognition 
of all the categories is only about 8.1 ms. The maxi-
mum value is 8.7 ms for recognizing sealing elements, 
and the minimum value is 7.9 ms for recognizing 
filters, supporters, molds, and wheels.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Some of the visual classification results of the 
test 3D CAD models recognized by the deep network 
classifier are shown in Fig. 7. The four columns in the 
middle show some typical models that are correctly 
identified by the classifier of the five categories.  
Fig. 8 shows the other 23 categories that can be rec-
ognized a hundred percent. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Ten models are not correctly recognized by our 
classifier. A possible explanation is that these models 
vary significantly in geometry with respect to their 
typical models. For example, gear_1 is wrongly rec-
ognized as a washer. Tiny thickness and large radius 
of the inner hole make gear_1 very close to a washer 
in terms of appearance. gear_2 is wrongly recognized 
as a flange. Because gear_2 has a hollow cylinder in 
its axle, it looks like a flange. screw_1 and screw_2 
are wrongly recognized as sleeves. flange_1 and 
flange_2 are wrongly recognized as a washer and a 
gear, respectively. Another reason for the classifica-
tion error may be that the input patterns are handcraft 
features extracted from samples depending on human 
experience, and some information contained in raw 
3D models cannot be well represented by these 
handcraft features. For example, wheel_1 and 
wheel_2 are wrongly recognized as sleeves. Because 
humans recognize the two tires according to their 
surface texture, the handcraft features adopted in this 

Table 2  The error rate and average time for classification 
using the Zernike moments descriptor 

Index Category 
Model 
number 

Error 
number 

Error 
rate 

Avg. time 
(ms) 

0 Bearing house 33 0 0 8.1 

1 Distributor 22 0 0 8.1 

2 Key 192 0 0 8.0 

3 Filter 5 0 0 7.9 

4 Sleeve 83 0 0 8.2 

5 Hook wrench 4 0 0 8.3 

6 Template 9 0 0 8.0 

7 Sealing element 7 0 0 8.7 

8 Lifting hook 14 0 0 8.1 

9 Tensioner 19 0 0 8.1 

10 Shackle 8 0 0 8.0 

11 Two-end wrench 18 0 0 8.0 

12 Boring bar 51 0 0 8.0 

13 Chunk 7 0 0 8.0 

14 Clamping element 9 0 0 8.4 

15 Supporter 3 0 0 7.9 

16 Hydraulic part 31 0 0 8.3 

17 Valve 11 0 0 8.1 

18 Mold 7 0 0 7.9 

19 Gear 7 2 28.57% 8.0 

20 Washer 22 0 0 8.0 

21 Ball 23 0 0 8.1 

22 Nut 30 0 0 8.1 

23 Screw 80 2 2.50% 8.1 

24 Spring 16 2 12.50% 8.3 

25 Wheel 13 2 15.38% 7.9 

26 Flange 8 2 25% 8.1 

27 Retarder 5 0 0 8.2 

Total 737 10 1.36% 8.1 

 

Fig. 7  The five CAD model categories 
The 10 models wrongly recognized by the classifier are listed 
in the rightmost two columns. The first column gives the five 
categories that cannot be recognized a hundred percent. The 
four columns in the middle show some typical models that 
are correctly identified by the classifier of the five categories
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work fail to capture such special information. 
spring_1 and spring_2 are wrongly recognized as a 
sleeve and a screw, respectively. Through construct-
ing more complex deep learning models which have  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

more hidden layers and providing massive training 
sample data to these models, the classification accu-
racy could be further improved by learning features 
directly from raw 3D data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8  The 23 CAD model categories recognized with zero error rate 
Limited by space, only four models are listed for each category (three models for the supporter) 
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7.2 Comparison among the different input  
patterns 

The input patterns are important for classifica-
tion. Besides the Zernike moments descriptor, we run 
experiments with the Fourier descriptor and the hy-
brid descriptor to measure the influence of the dif-
ferent input patterns. From the perspective of classi-
fication accuracy, the Zernike moments descriptor 
outperforms the Fourier descriptor. Even if the hybrid 
descriptor is used which integrates the Zernike mo-
ments descriptor and the Fourier descriptor, the clas-
sification accuracy cannot be efficiently improved. 
The dimensionality of the hybrid descriptor, however, 
greatly increases compared with those of the other 
two descriptors. The time cost is the highest for rec-
ognizing the hybrid descriptor and the lowest for 
recognizing the Fourier descriptor.  

The input pattern of exploiting the Fourier de-
scriptor is a 1000-dimensional vector, which can be 
described as {fdj}, j=1, 2, …, 10, where fdj is the jth 
coefficient. The classification results on the test set 
are summarized in Table 3. Totally 20 models are 
wrongly recognized in the test set. The error rate on 
the entire test set is 2.71%. The average time spent on 
recognition of all the categories is about 4.0 ms.  

The input pattern of exploiting the hybrid de-
scriptor is a 4500-dimensional vector, which can be 
described as {zmdi, fdj}, i=1, 2, …, 35, j=1, 2, …, 10, 
where zmdi is the ith coefficient of the Zernike mo-
ments descriptor and fdj is the jth coefficient of the 
Fourier descriptor. The classification results on the 
test set are summarized in Table 4. Totally 11 models 
are wrongly recognized. The error rate on the entire 
test set is 1.49%. The average time spent on recogni-
tion of all the categories is about 9.5 ms. 

7.3  Comparison with SVM 

The constructed deep neural network classifier is 
compared with traditional shallow computational 
architectures such as SVM. The same training set, test 
set, and input pattern are used for the SVM-based 
classifier. Only the format of the input vector is 
transformed to the form which SVM needs. The 
format of the input vector provided for SVM is 
{<label> <index1>:<value1> <index2>:<value2>… 
<index3500>:<value3500>‘\n’}, where <label> is an 
integer indicating the class label, and the pair  
<index>:<value> gives a feature (attribute) value 

with <index> being an integer starting from 1 and 
<value> a real number. Indices must be in ascending 
order. SVM is a commonly used shallow architecture 
whose depth is two. SVM implements the ‘one- 
against-one’ approach for multi-class classification. 
The number of categories is 28 in our dataset; hence, 
28(28−1)/2=378 classifiers are constructed and each 
trains data from two classes. The radial basis function 
(RBF) is chosen as the kernel function, with the best 
parameter C=32, and gamma=0.001953125. Fig. 9 
shows the results. The classification accuracy on the 
test set achieved by using SVM is 88.47%. Experi-
ments show that the generalization performance of 
SVM is poorer than those of the deep neural  
networks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  The error rate and average time for classification 
using the Fourier descriptor 

Index Category 
Model 
number

Error 
number 

Error  
rate 

Avg. time 
(ms) 

0 Bearing house 33 0 0 3.9 

1 Distributor 22 2 9.09% 4.1 

2 Key 192 0 0 3.9 

3 Filter 5 1 20% 4.5 

4 Sleeve 83 0 0 4.0 

5 Hook wrench 4 0 0 3.9 

6 Template 9 0 0 4.2 

7 Sealing element 7 0 0 4.0 

8 Lifting hook 14 0 0 3.9 

9 Tensioner 19 0 0 3.9 

10 Shackle 8 0 0 3.9 

11 Two-end wrench 18 0 0 3.9 

12 Boring bar 51 1 1.96% 4.1 

13 Chunk 7 0 0 4.0 
14 Clamping    

element 
9 0 0 4.1 

15 Supporter 3 0 0 4.0 

16 Hydraulic part 31 0 0 4.0 

17 Valve 11 0 0 4.1 

18 Mold 7 0 0 4.1 

19 Gear 7 6 85.71% 3.8 

20 Washer 22 2 9.09% 4.0 

21 Ball 23 0 0 3.8 

22 Nut 30 0 0 3.8 

23 Screw 80 1 1.25% 4.1 

24 Spring 16 0 0 3.9 

25 Wheel 13 5 38.46% 3.9 

26 Flange 8 2 25% 4.0 

27 Retarder 5 0 0 4.3 

Total 737 20 2.71% 4.0 
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7.4  Comparison with the existing works 

We compare our approach with some previous 
works (Table 5). The second column shows models 
contained in the dataset, the third column shows the 
total number of models in the dataset, and the fourth 
column shows the total number of categories in the 
dataset. The fifth column shows the features used to 
describe the 3D models, the sixth column shows the 
classifiers, and the average correct rates of each ap-
proach are compared in the rightmost column. Ex-
perimental results show that our approach outper-
forms the other approaches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  Comparison of our approach and the state-of-the-art approaches 

Reference Model 
Total  

number of 
models

Total 
number of 
categories

Feature Classifier 
Avg. correct 

rate 

This study 3D CAD models 7464 28 Modified LFD Deep neural  
network 

98.64% 

Wu and Jen, 1996 3D prismatic parts 36 – Simplified skeletons Back-propagation 
neural network 

– 

Ip et al., 2003; Ip and 
Regli, 2005a 

3D CAD models 85 12 Enhanced shape distribution kNN 72.30% 

Ip et al., 2003; Ip and 
Regli, 2005a 

3D CAD models 56 4 Enhanced shape distribution kNN 66.71% 

Hou et al., 2005 3D CAD models 218 6 Moments invariants,  
geometric ratios, and  
principal moments 

SVM 88.24% 

Ip and Regli, 2005b 3D CAD models 100 – Curvatures SVM 75.33% 

Wei et al., 2008 3D VRML models 30 – Color Hopfield neural 
network 

– 

 

Table 4  The error rate and average time for classification 
using the hybrid descriptor 

Index Category 
Model 
number

Error 
number 

Error  
rate 

Avg. time 
(ms) 

0 Bearing house 33 0 0 9.4 
1 Distributor 22 0 0 9.5 
2 Key 192 0 0 9.5 
3 Filter 5 0 0 9.6 
4 Sleeve 83 0 0 9.5 
5 Hook wrench 4 0 0 10.5 
6 Template 9 0 0 9.5 
7 Sealing element 7 0 0 9.6 
8 Lifting hook 14 0 0 9.5 
9 Tensioner 19 0 0 9.7 
10 Shackle 8 0 0 9.6 
11 Two-end wrench 18 0 0 10.0 
12 Boring bar 51 1 1.96% 9.4 
13 Chunk 7 0 0 9.4 
14 Clamping  

element 
9 0 0 9.3 

15 Supporter 3 0 0 9.8 
16 Hydraulic part 31 0 0 9.5 
17 Valve 11 0 0 9.8 
18 Mold 7 0 0 9.3 
19 Gear 7 3 42.86% 9.5 
20 Washer 22 1 4.55% 9.5 
21 Ball 23 2 8.70% 9.3 
22 Nut 30 2 6.67% 9.3 
23 Screw 80 0 0 9.5 
24 Spring 16 1 6.25% 9.7 
25 Wheel 13 1 7.69% 9.8 
26 Flange 8 0 0 9.8 
27 Retarder 5 0 0 9.5 

Total 737 11 1.49% 9.5 

 

Fig. 9  The classification accuracy on the test set achieved 
using SVM 
References to color refer to the online version of this figure
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8  Conclusions 
 

In this paper, we present an automatic 3D CAD 
model classification approach based on the deep 
learning technique. By analogy with the main phases 
of a manual classification process, a 3D model clas-
sifier is constructed based on deep neural networks. 
Meanwhile, multiple training strategies are properly 
selected and combined to make the classifier obtain 
better generalization performance. To the best of our 
knowledge, we are the first to successfully apply the 
deep learning technique to 3D CAD model classifi-
cation. Experimental results are promising. The well 
trained classifier achieves relatively high classifica-
tion accuracy on new 3D models. The average time 
spent on model recognition is sufficiently short. 

In the future, we plan to build a larger dataset 
with much more CAD model categories to further 
verify the feasibility and effectiveness of the pro-
posed approach and explore its diverse use in real life. 

Furthermore, the light field descriptors of 3D 
models are low level features selected according to 
prior knowledge of the 3D CAD model classification 
domain. To completely discard the handcraft features, 
putting raw 3D model data as input of the deep neural 
networks is another challenging research direction. 
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