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Fig. 1. Comparisons of our method to the state-of-the-art mesh denoising methods: Bilateral normal filtering (BNF) [Zheng et al. 2011], 𝐿0 Smoothing (L0)
[He and Schaefer 2013], Cascaded normal regression (CNR) [Wang et al. 2016], and NormalF-Net (NFN) [Li et al. 2020c]. Our method consistently achieves
the best results for both smooth features and sharp features. The first row shows the denoising results on a real scan model and the second row shows the
results on a model with synthetic noise (i.e., Gaussian noise with the level of 0.3 mean edge length). The average normal angular errors (from left to right) are:
(1𝑠𝑡 row) 9.68◦, 9.03◦, 8.17◦, 8.29◦, 8.35◦, and 7.62◦; (2𝑛𝑑 row) 25.85◦, 3.53◦, 5.69◦, 3.36◦, 7.79◦, and 1.84◦.

In this paper, we present GCN-Denoiser, a novel feature-preserving mesh
denoising method based on graph convolutional networks (GCNs). Unlike
previous learning-based mesh denoising methods that exploit hand-crafted
or voxel-based representations for feature learning, our method explores the
structure of a triangular mesh itself and introduces a graph representation
followed by graph convolution operations in the dual space of triangles. We
show such a graph representation naturally captures the geometry features
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while being lightweight for both training and inference. To facilitate effective
feature learning, our network exploits both static and dynamic edge convo-
lutions, which allow us to learn information from both the explicit mesh
structure and potential implicit relations among unconnected neighbors. To
better approximate an unknown noise function, we introduce a cascaded
optimization paradigm to progressively regress the noise-free facet normals
with multiple GCNs. GCN-Denoiser achieves the new state-of-the-art results
in multiple noise datasets, including CAD models often containing sharp
features and raw scan models with real noise captured from different devices.
We also create a new dataset called PrintData containing 20 real scans with
their corresponding ground-truth meshes for the research community. Our
code and data are available in https://github.com/Jhonve/GCN-Denoiser.
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models.
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1 INTRODUCTION
With the increasing popularity of consumer-level depth cameras
and 3D scanners, it has become easier to acquire 3D models by
3D-scanning real-world objects. However, even with advanced cam-
era technologies, scanned models are inevitably corrupted by noise
mainly due to imperfect measurements, making them not immedi-
ately usable in the subsequent graphics pipelines.

Feature-preserving mesh denoising aims to recover the underly-
ing surface signal (e.g., position, normal) from a measurement with
noise Δ∗, essentially, to remove the noise 𝜖 = Δ∗ − Δ while keeping
the underlying features preserved. This problem is inherently ill-
posed since both Δ and 𝜖 are unknown. To make it tractable, priors
and assumptions on Δ or 𝜖 are often made. For example, the pattern
of 𝜖 is assumed to follow a Gaussian distribution or to be indepen-
dent and identically distributed. Unfortunately, these assumptions
are often invalid for real scanners [Wang et al. 2012], thus chal-
lenging a variety of traditional filter-based and optimization-based
denoising approaches [Fleishman et al. 2003; He and Schaefer 2013;
Li et al. 2018; Wei et al. 2019b; Zhang et al. 2015; Zheng et al. 2011].

Data-driven methods have attracted a lot of attention lately and
several approaches have been introduced for mesh denoising [Li
et al. 2020c; Wang et al. 2016; Zhao et al. 2019b]. Without making
any specific assumption on the data, these methods estimate 𝜖 from
massive noisy meshes and their ground-truth counterparts, and
achieve impressive results. However, their learning paradigms still
suffer from several aspects. First, since 𝜖 can be a highly complex
function eroded over various geometric features, globally estimating
𝜖 is often intractable and thus surface patches are usually exploited
to regress Δ locally. This makes the design of a representation of
local patches an essential issue for learning-based algorithms. Exist-
ing data-driven methods either use hand-crafted features [Li et al.
2020c; Wang et al. 2016] or exploit a voxel representation [Zhao et al.
2019b], leading to either insufficient or redundant information flow
into the subsequent learning module. In addition, methods that rely
on convolution operations on voxels are known to be slow [Wang
et al. 2017], causing an additional efficiency issue.
To seek the balance between efficacy (geometry representation)

and efficiency, we present GCN-Denoiser, a novel approach for
feature-preserving denoising of mesh surfaces (triangular meshes in
our implementation) based on the extension of graph convolutional
networks (GCNs), which have been proved effective for various
applications [Schult et al. 2020] but not for feature-preserving mesh
denoising. GCN-Denoiser exploits a novel graph-based represen-
tation for local surface patches and employs graph convolution
operations to effectively learn the relations between 𝜖 and Δ. The
graph representation naturally fits into the local structure surround-
ing a surface facet and thus has better capability in capturing the
local geometric information than hand-crafted features and voxel-
based features, enabling a more accurate estimation of 𝜖 while being
also efficient at runtime.
Like previous works [He and Schaefer 2013; Wang et al. 2016],

we model Δ as surface normal signals. Our goal is to regress for
each facet a normal from a local patch surrounding the facet. To this
end, we build our graph structure in the dual space of mesh facets,
where each facet of the mesh forms a graph node and adjacent facets

are connected with graph edges. We then define graph convolution
operations that directly operate on mesh facets to deal with varying
local graph structures. To effectively learn features, our network
architecture employs both static and dynamic edge convolution
operations to exploit both the explicit and implicit graph structures,
enabling information flow from both the neighboring facets and the
unconnected ones in a patch. We further introduce a normal tensor
voting strategy to make our patch representation rotation-invariant.
Finally, cascaded optimization is employed to progressively regress
Δ using multiple GCNs.
We test our method extensively on both synthetic and real-scan

models (including a newly created dataset: PrintData) and make
comparisons with the state-of-the-art algorithms. Various experi-
ments demonstrate that our method produces superior results to
the compared approaches. In summary, the main contributions of
this paper are:

• We introduce the first GCN-basedmethod for feature-preserving
mesh denoising, which achieves the new state-of-the-art re-
sults while being well-balanced between efficacy and effi-
ciency;

• We present a rotation-invariant graph representation on the
dual space of mesh faces, enabling effective feature learning
with graph convolutions;

• We create a new feature-preserving mesh denoising dataset
consisting of 20 real scans with corresponding ground-truth
meshes by using a high-end 3D printer and a high-resolution
scanner.

2 RELATED WORK
We review the literature of feature-preserving mesh denoising and
some recent advances in graph convolutional networks.

2.1 Mesh Denoising
The task of denoising on mesh surfaces is akin to that on 2D images,
since vertex positions or face normals are essentially signals in
3D. Hence, mesh denoising techniques have been heavily inspired
by denoising techniques in images. Various low-pass and feature-
preserving filters have been introduced for mesh denoising [Bajaj
and Xu 2003; Clarenz et al. 2000; Shen and Barner 2004; Tasdizen
et al. 2002; Yagou et al. 2002, 2003], based on the assumption that
the noise over a surface is often of high frequency. Among them,
a bilateral filter is one of the most widely applied filters [Adams
et al. 2009; Fan et al. 2010; Fleishman et al. 2003; Jones et al. 2003;
Shimizu et al. 2005; Wang et al. 2012; Wei et al. 2015; Yadav et al.
2019; Yoshizawa et al. 2006; Zheng et al. 2011] due to its simplicity
and feature-preserving property. It is reported in [Lee and Wang
2005; Zheng et al. 2011] that normals are often more discriminative
in describing local geometry than vertex positions. In light of this,
a series of research works improve the denoising performance by
first updating facet normals and then vertex positions [Sun et al.
2007]. Extensions to these works have been made later on to find
more robust filtering schemes on facet normals [Zhang et al. 2015;
Zhao et al. 2019a]. A common drawback in filter-based methods is
that once the features are highly corrupted by noise, they, especially
weak ones, are difficult to be recovered by these methods.
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Fig. 2. The pipeline of GCN-Denoiser. For each mesh facet, a graph patch is generated in the dual space of triangles and subsequently fed into multiple GCNs
to regress the final noise-free normal for the facet. The output normals of each GCN are used to update the mesh geometry via vertex updating. Then each
updated graph patch is fed into the next GCN. In practice, 2 GCNs are sufficient to achieve sufficiently denoised results.

Optimization-based mesh denoising methods take from another
perspective by seeking a denoised mesh to approximate an input
mesh conditional on a set of priors imposed on the ground-truth
geometry or noise patterns. They formulate the denoising procedure
as optimization problems and solve them via techniques such as
Bayesian [Diebel et al. 2006], 𝐿0 minimization [He and Schaefer
2013], compressed sensing [Wang et al. 2014], or low-rank recovery
[Li et al. 2018; Wei et al. 2019b]. These methods, however, only work
well for meshes where their assumptions are satisfied, and often do
not generalize well for meshes with different geometry features and
noise patterns.

In contrast, learning-based methods do not make specific assump-
tions about the underlying features or noise patterns, and have
been successfully applied to image denoising [Agostinelli et al. 2013;
Burger et al. 2012; Jin et al. 2017; Sterzentsenko et al. 2019; Xie et al.
2012; Yan et al. 2018; Zhang et al. 2017]. However, unlike images,
3D meshes are usually irregular, thus making image-based convolu-
tional operations not directly applicable. To address this issue, Wang
et al. [2016] introduce a filtered facet normal descriptor (FND), which
is extracted from a local region by bilateral filtering with multiple
kernels, and utilize simple multilayer perceptrons (MLPs) to regress
noise-free normals from the descriptor. Later on, Zhao et al. [2019b]
employ a voxel-based representation and apply 3D convolution to
regress noise-free normals. In [2020c], Li et al. adopt a non-local
patch matrix proposed by [Li et al. 2018] as a regular representa-
tion of mesh patches and use 2D convolutional networks to learn
noise-free normals. Wei et al. [2019a] introduce a learning-based
de-filtering strategy to recovery over-smoothed weak features, but
their results depend on the quality of pre-denoised meshes. In a
concurrent work, Li et al. [2020b] omit the adjacent relationship
between mesh faces and use a similar architecture of PointNet++
[Qi et al. 2017b] to regress a new normal vector from a patch of facet
normals. Different from these works, our method directly feeds an
irregular mesh patch data into a graph convolutional network rather
than seeking an intermediate hand-crafted representation. We show
that our graph-based representation of local surface geometry with
graph convolution operations enables our network to have better
capability in capturing the inherent geometry features of a noisy
patch than the above-discussed methods.

2.2 Graph Convolutional Networks
Graph convolutional networks (GCNs) have been introduced for
handling non-Euclidean structures. Early works of GCNs require
a static graph structure [Bruna et al. 2014; Defferrard et al. 2016]
and thus cannot be extended for meshes with varying topology.
Recent studies on dynamic graph convolution show that changeable
edges can perform better. For example, Simonovsky et al. [2017]
generalize the convolution operator to irregular graphs with filter
weights. Wang et al. [2019] dynamically construct graph structures
by connecting neighboring nodes in each layer. Valsesia et al. [2019]
construct node neighbors using K-nearest-neighbors (KNN). Further-
more, Li et al. [2019] show that very deep GCNs with dynamic graph
convolutions can further boost the performance in applications such
as point cloud recognition and segmentation. Our method exploits
both the static graph structure in patches and dynamic graph struc-
tures that are constructed during convolution to effectively learn
the geometry features in patches.

There are some other convolution operators developed for meshes
lately. In [Masci et al. 2015; Monti et al. 2017], local coordinate
systems are defined to confine the convolution operations on regular
grids. MeshCNN [Hanocka et al. 2019] executes convolution or
pooling on mesh edges while [Schult et al. 2020] performs graph
convolution and vertex pooling on mesh vertices. In [2019], Feng
et al. introduce a convolution on mesh facets and separate mesh
features into spatial and structure levels manually. These methods
are mainly designed for understanding whole objects or large scenes
and require very deep architectures. Instead, we pay more attention
to local patches and employ the convolution in the dual space of
mesh facets.

3 ALGORITHM OVERVIEW
Fig. 2 illustrates the pipeline of GCN-Denoiser. Since 𝜖 is usually
a highly complex function over the underlying surface, we take a
local approach to approximate it. Our aim is to predict a noise-free
normal 𝑛𝑓 for each individual facet 𝑓 surrounded by a noisy local
surface patch 𝑝 in the dual domain of mesh triangles. Given the
denoised facet normals, we update the vertex positions according
to the method of [Zheng et al. 2011] to get a denoised surface.
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Given a noisy triangular mesh, we first generate a local patch for
each facet. To eliminate the global spatial transformations among
the local patches, we apply normal tensor voting to the collected
patches to align them into a common embedding (Section 4.2). Next,
we convert these aligned patches into graph representations (Sec-
tion 4.3), then feed these patch graphs into our GCN network to
progressively compute the noise-reduced normals (Section 5.1), and
then obtain a noise-reduced mesh via vertex updating (Section 6).
Even when we approximate the noise function 𝜖 in local patches, the
underlying noise patterns there could still be complex as they are
eroded by different geometric features. Hence, as a common practice
for approximating a highly nonlinear function [Li et al. 2020c; Wang
et al. 2016], we employ a cascaded optimization to train multiple
GCNs to progressively regress the final noise-free normals. In each
GCN, pairs of (𝑝, 𝑛𝑓 ) are collected for training (Section 5.2). The
overall workflow is similar among all the cascaded stages, and the
only difference is that the noise levels of {𝑝}-s are different.

4 PATCH GENERATION AND ALIGNMENT
We define an input triangular mesh as𝑀 = {𝑉 , 𝐹 }, with𝑉 = {𝑣𝑖 }𝑁𝑣

1

the set all vertices and 𝐹 = {𝑓𝑖 }
𝑁𝑓

1 the set all facets. 𝑁𝑣 and 𝑁𝑓 are
respectively the number of vertices and the number of faces. For
each facet 𝑓𝑖 in 𝐹 , we will generate its local patch data 𝑝𝑖 . The set
of all patches in 𝑀 is defined as 𝑃 = {𝑝𝑖 }

𝑁𝑓

1 . Also, we denote the
normal of a facet 𝑓𝑖 as 𝑛𝑖 , its centroid as 𝑐𝑖 , and its area as 𝑎𝑖 .

4.1 Patch Selection
A patch 𝑝𝑖 in our context refers to all facets (including 𝑓𝑖 ) within
a sphere of radius 𝑟 located at the centroid 𝑐𝑖 of facet 𝑓𝑖 , i.e., 𝑝𝑖 is
supposed to satisfy:

∀
𝑓𝑗 ∈𝑝𝑖

∃
𝑣𝑘 ∈𝑓𝑗

| |𝑣𝑘 − 𝑐𝑖 | | < 𝑟 . (1)

We use 𝑟 = 𝑘𝑎
1
2

𝑖
, where 𝑎𝑖 is the average area of 2-ring neighboring

facets of 𝑓𝑖 and 𝑘 is a parameter relevant to the resolution of an
input mesh (Section 7.4). We incorporate the facet area in defining
our patch to accommodate irregular sampling (see an example in
Fig. 8).

4.2 Patch Alignment via Tensor Voting
Patches at different spatial locations would cause troubles for neural
networks, since learning spatial transformations is known to be
difficult for deep methods [Li et al. 2020a]. To address this issue,
we resort to a normal tensor voting strategy to explicitly align the
patches into a common coordinate system.

As in [Zhao et al. 2019b], we first translate 𝑝𝑖 to the origin [0, 0, 0]
and also scale it into a unit bounding box. The normal voting tensor
𝑇𝑖 [Shimizu et al. 2005] for facet 𝑓𝑖 is then defined by:

𝑇𝑖 =
∑
𝑓𝑗 ∈𝑝𝑖

𝜇 𝑗𝑛 𝑗
′𝑛 𝑗 ′

𝑇
, (2)

where 𝜇 𝑗 = (𝑎 𝑗/𝑎𝑚) exp (−||𝑐 𝑗 − 𝑐𝑖 | |/𝜎), with 𝑎𝑚 being the maxi-
mum triangle area in 𝑝𝑖 , and 𝑛 𝑗 ′ is the voted normal of 𝑓𝑗 : 𝑛 𝑗 ′ =
2(𝑛 𝑗 ·𝑤 𝑗 )𝑤 𝑗 −𝑛 𝑗 , with𝑤 𝑗 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒{[(𝑐 𝑗 −𝑐𝑖 ) ×𝑛 𝑗 ] × (𝑐 𝑗 − 𝑐𝑖 )}.

e1
e2

e3 e3

e2

x

y
z

(a) (b) (c)

Fig. 3. (a) original patch, (b) patch after applying our normal tensor voting
to (a), and (c) the graph structure of the patch.

Since 𝑇𝑖 is a positive semi-definite matrix and can be represented
by its spectral decomposition as:

𝑇𝑖 = 𝜆1𝑒1𝑒1
𝑇 + 𝜆2𝑒2𝑒2𝑇 + 𝜆3𝑒3𝑒3𝑇 , (3)

where 𝜆1 ≥ 𝜆2 ≥ 𝜆3 are its eigen values, and 𝑒1, 𝑒2 and 𝑒3 are the
corresponding unit eigen vectors, which form a group of orthonor-
mal basis. Then we construct a rotation matrix 𝑅𝑖 = [𝑒1, 𝑒2, 𝑒3] and
multiply each facet’s centroid and normal in 𝑝𝑖 with 𝑅−1𝑖 to generate
new patch data 𝑝𝑖 . We show the comparison between the rendered
patch data before and after alignment in Fig. 3.

4.3 Graph Representation
We build a graph structure for each of our generated patches after
alignment in order to shape it to fit our subsequent graph convolu-
tional networks. An undirected graph G = (𝑄, 𝐸,Φ) is built, where
a graph node 𝑞𝑖 ∈ 𝑄 is created for each facet 𝑓𝑖 in patch 𝑝 and an
edge 𝑒 = (𝑞𝑖 , 𝑞 𝑗 ) ∈ 𝐸 is created if the corresponding faces 𝑓𝑖 and 𝑓𝑗
are adjacent. Fig. 3 (c) shows an example. Φ contains a set of node
attributes, i.e., feature tuples. For each 𝜙𝑖 ∈ Φ, which corresponds
to facet 𝑓𝑖 , we set 𝜙𝑖 = (𝑐𝑖 , 𝑛𝑖 , 𝑎𝑖 , 𝑑𝑖 ). Here 𝑐𝑖 and 𝑛𝑖 respectively
indicate the centroid and normal of facet 𝑓𝑖 after alignment. 𝑑𝑖 is
the number of neighboring facets in the 1-ring neighborhood of 𝑓𝑖 ,
which helps distinguish boundary faces.

5 NORMAL REGRESSION
With the graph representation G𝑖 extracted for each patch 𝑝𝑖 , we
now detail our multiple graph convolutional networks that take G𝑖

as input and output a denoised normal vector 𝑛𝑖 for facet 𝑓𝑖 .

5.1 Graph Convolutional Network
Our GCN network consists of multiple convolutional layers. In each
layer, similar to traditional convolutional networks, our GCN aggre-
gates features from neighboring nodes of each node and updates
its features. The aggregating and updating are also named as a
convolutional operation.

Graph Convolution. Although each graph contains necessary con-
nectivity among facets, their structures vary across patches. Thus,
we adopt an Edge-Conditioned Convolution (ECC) strategy pro-
posed in [Simonovsky and Komodakis 2017] to deal with convo-
lutions among varying structures. Specifically, we use EdgeConv
[Wang et al. 2019] as described below.

Let G𝑙 = (𝑄𝑙 , 𝐸𝑙 ,Φ𝑙 ) be the 𝑙-th layer in our graph convolutional
network andF𝑖

𝑙
is the feature vector of the 𝑖-th node inG𝑙 . EdgeConv
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updates nodes features by:

F𝑖
𝑙+1 = Ψ

𝑗 :(𝑖, 𝑗) ∈𝐸𝑙
ℎ𝑙Θ (F

𝑖
𝑙
,F

𝑗

𝑙
), (4)

whereΨ is amax aggregation operation andℎ𝑙Θ = Linear𝑙Θ (F
𝑖
𝑙
,F

𝑗

𝑙
−

F𝑖
𝑙
). Each graph convolutional layer of our network shares the same

LinearΘ, which is a multi-layer perceptron (MLP) including batch
normalization and activation function LeakyReLU.

By only utilizing the original graph structure might lead to some
missing information during convolution since the mapping from
geometry to connectivity is not a one-to-one function. To enrich the
receptive field of a graph node, we further allow non-adjacent graph
nodes to be connected during convolution. This corresponds to a dy-
namic graph construction procedure [Simonovsky and Komodakis
2017; Wang et al. 2019]. We call graph convolution with this scheme
dynamic EdgeConv. For this scheme, the neighbors of each node
are dynamically calculated by KNN (K = 8 in our implementation)
based on the Euclidean distance of node features.

Network Architecture and Training. As shown in Fig. 4, our net-
work architecture consists of 𝐿𝑒 layers of EdgeConv, 𝐿𝑑 layers of
dynamic EdgeConv, and 𝐿𝑙 layers of fully connected (FC) layers.
After the layers of graph convolution, the learned features are con-
catenated together for pooling. We use both average pooling and
max pooling as symmetric functions, which are able to select the
most important features. Finally, the FC layers follow to regress a
3D vector, which is our predicted normal. Every layer in our archi-
tecture except the last FC layer is followed by batch normalization
and activation function LeakyReLU.
As discussed in Section 3, we use cascaded GCNs (GCN1, ...,

GCN𝑙 ) to progressively regress the noise-free normals. All GCNs
used in the cascaded optimization share the same architecture but
with different numbers of EdgeConv, dynamic EdgeConv, and FC
layers and are trained iteratively as in [Wang et al. 2016]. In our
experiments, we use 𝐿𝑒 = 3, 𝐿𝑑 = 3, and 𝐿𝑙 = 4 for the first GCN,
and 𝐿𝑒 = 2, 𝐿𝑑 = 2, and 𝐿𝑙 = 3 for the rest, since we wish the
first one to recover the normals coarsely while the rest ones to
refine the details. The loss function is MSE between the network

Concatenate

Input Graph

� �

Static EdgeConv Dynamic EdgeConv

Data Flow

Linear layer

Symmetric 
Function

Predicted Normal

... ...

...... ...

Fig. 4. Our GCN architecture. Both static EgdeConv and dynamic EdgeConv
are applied and their aggregated information is combined to flow into
subsequent MLPs to regress a noise-reduced normal.

Training dataset

Test dataset

(a)
(b)

(c)

(d)

(e)

(f)

(g)

(h)
(i)

(j)

Fig. 5. Representative mesh models including (a, b, c, f, g, h) those with
synthetic noise (SysData), (d, i) Kinect v1/v2 real scan models (Kv1Data,
Kv2Data), and (e, j) Kinect v1 fused models (K-FData). Following [Wang
et al. 2012], we consider (a, f) as smooth models, (b, g) CAD models, and (c,
h) feature models. The bottom-right set of models consists of all synthetic
models and sampled real scan models for training, and the top-left set of
models consists of sampled test models.

output and the ground truth normal, which is 𝑅−1𝑛𝑓 . Here, 𝑛𝑓 is
the normal of face 𝑓𝑖 in the ground-truth noise-free mesh and 𝑅 is
the corresponding rotation matrix in Section 4.2. We use the MSE
loss instead of cosine similarity since it leads to more stable training
as MSE imposes hard constraints on the values to be within the
range of (0,1). Note that we map the normalized normals from (-1,
1) into (0, 1).

In an offline training step, we use the output of GCN𝑖 to denoise
(with both normal updating and vertex updating) a noisy mesh in
our training set, and new graphs are generated from these updated
meshes to train the next GCN𝑖+1. We stop cascading our GCNs
when the validation error is not decreasing. In our experiments, we
find that from GCN2, the accuracy of GCN𝑖 improves very slightly
(see in Fig. 18), thus, unless explicitly indicated, we use two cascaded
GCNs in our pipeline.

5.2 Data Generation
Our training set contains mesh models with both synthetic or real
noise (Fig. 5). For each 3D model, we generate different levels and
types (Gaussian and Impulsive) of noise for training.
We observe that although mesh surfaces appear rather different

from each other, their local patches are less diverse. For example,
in most of the CAD models, there are a redundant number of flat
patches, and edge and corner features, which would cause an imbal-
anced data distribution during training. In light of this, we apply
the tensor voting strategy described in Section 4.2 on each facet of
noise-free models in our dataset and get three eigenvalues 𝜆1, 𝜆2,
and 𝜆3. For each model we first classify the facets into four groups:
those with {𝑓𝑖 |𝜆𝑖2 < 0.01 ∧ 𝜆𝑖3 < 0.001} as flat facets, those with
{𝑓𝑖 |𝜆𝑖2 > 0.01 ∧ 𝜆𝑖3 < 0.1} as edge facets, those with {𝑓𝑖 |𝜆𝑖3 > 0.1}
as corner facets, and the rest as transitional facets. Several examples
of classified faces are shown in Fig. 7 with different colors. Due to
the numbers of edge and corner facets are smaller compared with
those of the other two types of features, we further arrange them
into two groups: a group of non-feature facets composed of flat
and transitional facets, and a group of feature facets composed of
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corner and edge facets. We then sample among the two groups to
collect our training patches. This data-balancing strategy is used
for training all our GCNs.

6 SURFACE DENOISING WITH PREDICTED NORMALS
Given the predicted normals of a noisy input mesh, we first refine
them to handle possible discontinuities between adjacent faces and
then reconstruct its denoised version under their guidance.

6.1 Normal Refinement
The method based on local regression of each face’s normal indepen-
dently would lead to a problem of discontinuities between adjacent
faces. This results in small perturbations on the denoised surface
especially for some CAD models (Fig. 8). To alleviate this issue, we
apply a bilateral filter [Zheng et al. 2011] with small kernels to refine

1cm

Fig. 6. Mesh models and printed results in the proposed PrintData dataset,
consisting of 20 models in total. The close up shows some print errors like
the vertical lines.

Trasitional facetsFlat facets Edge facets
Group of non-feature facets

Corner facets
Group of feature facets

Fig. 7. We classify the facets into two main groups: a group of non-feature
facets (flat facets and transitional facets) and a group of feature facets (edge
facets and corner facets), and select samples from these two groups for a
balanced training.

(a) (b) (c) (d)

Fig. 8. Normal refinement further improves the output normals from our
GCNs output (c), and leads to a slightly better denoised result (d). (b) is the
wireframe of the original noise-free mesh showing the irregular sampling.
The average angular errors 𝐸𝑎 of (c) and (d) are 2.67◦ and 2.16◦, respectively.

the normals predicted by cascaded GCNs:

¤𝑛𝑖 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (
∑
𝑓𝑗 ∈Ω𝑖

𝑎 𝑗𝑊𝑠 ( | |𝑐 𝑗 − 𝑐𝑖 | |)𝑊𝑟 ( | |𝑛 𝑗 − 𝑛𝑖 | |)𝑛 𝑗 ), (5)

where ¤𝑛𝑖 is the final refined normal, Ω𝑖 is a set of neighbors of 𝑓𝑖
defined in [Zhang et al. 2015],𝑊𝑠 and𝑊𝑟 are Gaussian functions
with kernels 𝜎𝑠 (spatial variance) and 𝜎𝑟 (range variance) respec-
tively, and𝑛 represents the predicted normal outputted by our GCNs.
The refinement is applied iteratively with 𝑚 steps and fixed ker-
nels (𝜎𝑠 = 𝑙𝑒 , where 𝑙𝑒 is the average distance between neighboring
facet centroids across the whole mesh and 𝜎𝑟 = 0.3). Note that this
normal refinement is only applied to the output normals of the last
cascaded GCN.

In our experiments, we find that meshes consisting of many large
flat areas of features or corrupted by high noise can be refined well
after 𝑚 ∈ [8, 16] iterations of normal refinement, while meshes
with fine features and small noise do not necessarily need normal
refinement. Thus, in our experiments, we set 𝑚 = 12 for CAD
models and Kinect real-scan models, which often contain high noise,
and𝑚 = 1 for the others. Fig. 9 and 10 show the effect of normal
refinement.

6.2 Vertex Updating
The vertex updating scheme in our method is the same as [Sun et al.
2007; Zheng et al. 2011], and defined by:

𝑣𝑘+1𝑖 = 𝑣𝑘𝑖 + 1

3|Ω′
𝑖
|
∑
𝑓𝑗 ∈Ω′

𝑖

∑
𝑒𝑖 𝑗 ∈𝜕𝑓𝑗

𝑛
𝑔

𝑗
[𝑛𝑔

𝑗
· (𝑣𝑘𝑗 − 𝑣

𝑘
𝑖 )], (6)

where Ω′
𝑖
is a set of one-ring neighboring faces for 𝑣𝑖 and 𝑛

𝑔

𝑗
is the

denoised normal of facet 𝑓𝑗 . In our experiments, we find that 15
iterations are sufficient for all our results.

7 EXPERIMENTS
We have conducted extensive experiments to evaluate our proposed
method with both synthetic and real-scan datasets. All of our ex-
perimental tests are conducted on a PC with Intel(R) Core(TM)
i7-8770 3.20GHz CPU, 16GB memory, and one GeForce GTX 1080Ti
GPU. Our GCNs are implemented using the PyTorch framework
and integrated with the PyTorch C++ Library.
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7.1 Dataset
We build our training datasets on the models from [Wang et al. 2016]
(see representative models in Fig. 5), consisting of:

• SysData: There are 14 models as shown in (a), (b) and (c) of Fig.
5. For each mesh, we synthesize three levels of Gaussian (with
their deviations set to 0.1, 0.2, and 0.3 of each mesh average
edge length) and impulsive noise (the numbers of impulsive
vertices are 10%, 20%, and 30% of the mesh vertex numbers)
for training. After data balancing (Section 5.2), there are about
2.4M patches in this dataset. This dataset contains three types
of mesh models: CAD models, smooth models, and models
with rich fine-scale features as shown in Fig. 5.

• Kv1Data: This set contains meshes scanned by Microsoft
Kinect v1. We select 48 frames from four scanned models (12
frames for each model) and there are about 910K patches in
total after data balancing.

• Kv2Data: These are meshes scanned by Microsoft Kinect v2
and we select 48 frames from four scanned models (12 frames
for each model). In total, there are about 560K patches after
data balancing.

• K-FData: This set contains meshes scanned by Microsoft
Kinect v1 via the Kinect-Fusion technique [Newcombe et al.
2011]. We generate about 200K patches from 3 models (see in
Fig. 5 e).

For the real scan datasets (i.e., Kv1Data, Kv2Data, and K-FData),
their ground-truth counterparts are provided by [Wang et al. 2016].

For testing, four benchmark datasets are paired with the training
datasets accordingly. For SysData, similarly, three levels of Gaussian
noise are added onto 29 meshes including 14 CAD-like mesh models,
7 smooth mesh models, and 8 mesh models with rich features, so
there are 87 models in total. For real-scan datasets, there are 73
scanned frames for the Kv1Data benchmark, 72 scanned frames for
the Kv2Data benchmark, and 4 models for the K-FData benchmark.
Apart from these, we build a new real-scan dataset, consisting of 20
scans and their corresponding ground-truth models:

• PrintData: To create this dataset, we first select 20 3D models
from an online 3D model repository (3dmag.org). These orig-
inal 3D models serve as the ground truth. We then prepare
physical models by 3D-printing these digital models using a
high-end 3D printer (Stratasys Eden260v) and scan the printed
models using high-resolution scanners (Artec SpiderTM and
SHINNING 3D EinScan Pro 2x).

7.2 Error Metrics
To evaluate our results and quantitatively compare our method with
the state-of-the-art methods, we use two commonly adopted types of
metric defined as follows. 𝐸𝑎 measures the average normal angular
difference between a denoised mesh and the original noise-free
mesh.

𝐸𝑎 =
1

𝑁𝑓

∑
𝑓 𝑟
𝑖
∈𝐹𝑟

𝑎𝑐𝑜𝑠 (𝑛𝑟𝑖 · 𝑛𝑖 ), (7)

where 𝑛𝑟
𝑖
and 𝑛𝑖 are a normalized normal of the 𝑖-th facet in the

denoised mesh and the normalized normal of the corresponding
facet in the ground-truth mesh. 𝐹𝑟 is the set of all facets in the

CAD models smooth models feature models

10
-4

10
-4

10
-4

Ea Ea Ea

Ev Ev Ev

Fig. 9. Quantitative comparisons with the state-of-the-art methods on the
SysData benchmark dataset (i.e., CAD models, smooth models, and feature
models), using the error metrics defined in Equations 7 and 8. Higher bars
are truncated for better illustration. “Ours-” denotes our method without
normal refinement.

denoised mesh.

𝐸𝑣 =
1

𝑁𝑣𝐿𝑑

∑
𝑣𝑟
𝑖
∈𝑉 𝑟

𝑀

min
𝑣𝑗 ∈𝑉𝑀

| |𝑣𝑟𝑖 − 𝑣 𝑗 | |. (8)

Here 𝐸𝑣 is the normalized average Hausdorff distance from a de-
noised mesh to the corresponding ground-truth mesh [Wang et al.
2016], where 𝐿𝑑 is the diagonal length of the mesh’s bounding box,
and𝑉 𝑟

𝑀
and𝑉𝑀 are vertices sets of these paired meshes after Monte

Carlo sampling.

7.3 Results and Comparisons
We compare both qualitatively and quantitatively of our method
with the state-of-the-art mesh denoising methods including bilat-
eral mesh filtering (BMF) [Fleishman et al. 2003], bilateral normal
filtering (BNF) [Zheng et al. 2011], the 𝐿0 smoothing (L0) [He and
Schaefer 2013], guided normal filtering (GNF) [Zhang et al. 2015],
non-local low-rank based method (LR) [Li et al. 2018], cascaded
normal regression (CNR) [Wang et al. 2016], deep normal filtering
(DNF) [Li et al. 2020b], and NormalF-Net (NFN) [Li et al. 2020c].

10 10

Ea Ea

EvEv
-3 -3

Kv1Data Kv2Data

10

Ea

Ev
-3

PrintData

Fig. 10. Comparisons with the state-of-the-art methods on the benchmark
datasets: Kv1Data, Kv2Data, and PrintData. “Ours-” denotes our method
without normal refinement.
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Synthetic Models. For the comparisons with the learning-based
methods [Li et al. 2020c; Wang et al. 2016], we use the results di-
rectly obtained from the original authors (since the authors of [Zhao
et al. 2019b] do not provide their source code, we refer to [Li et al.
2020c] for detailed comparisons therein). To compare with BMF,
BNF, L0, GNF, and LR, similar to [Wang et al. 2016], we select the
best results with fine-tuned groups of parameters for each of them
as our competitors. Specifically, we use 𝜎𝑠 = 𝑙𝑒 , 𝜎𝑟 = 0.35, 𝑛𝑛 = 20,
and 𝑛𝑣 = 20 (20 times normal iteration and vertex updating)] in
BNF, 𝜆 = 0.02𝑙𝑒

2
𝛾 (𝛾 is the average dihedral angle of a mesh) in L0,

𝜎𝑠 = 𝑙𝑒 , 𝜎𝑟 = 0.35, 𝑛𝑛 = 20, and 𝑛𝑣 = 20 in GNF, 𝜎𝑀 = 0.2, 𝑛𝑛 = 10,
and 𝑛𝑣 = 10 in LR.

We quantitatively compare the normal angular error 𝐸𝑎 and the
vertex distance error 𝐸𝑣 in the synthetic benchmark dataset Sys-
Data for all the competing methods, including ours. Fig. 9 shows
the results. In this benchmark, our method consistently outper-
forms the compared methods in all the categories, including CAD
models, smooth models, and models with rich features. Several rep-
resentative visual comparisons are shown in Fig. 11. In this test,
the performances of NormalF-Net (NFN) [Li et al. 2020c] and the
non-local recovery method (LR) [Li et al. 2018] are similar because
they both build upon the non-local representations. However, nei-
ther of them can handle well the CAD models with sharp features.
This is a nature of the optimization-based methods, which tend to
smooth out sharp features during minimization. As for DNF ([Li
et al. 2020b]), lacking mesh topological information in the normal
prediction step limits its ability to remove noise. The method of
cascaded regression (CNR) [Wang et al. 2016] performs moderately
well in both types of models with sharp features and fine features.
Nevertheless, our method is able to recover sharp features better
even from high noise, as shown in the top two rows of Fig. 11 while
also preserving the fine-scale features as shown in the bottom two
rows, clearly demonstrating the efficacy of our algorithm.
Fig. 12 shows two examples of denoised results of our method

on meshes with extremely high-level Gaussian noise (level 0.6) and
impulsive noise (60%, both in percentage and strength). The noise
level in those models is significantly higher than that of any model
in our training sets. Still, our method is able to denoise such noisy
models and consistently performs better than the comparedmethods.
In these examples, CNR cannot handle large positional bias between
the noisy meshes and ground-truth meshes (as admitted by the
authors of CNR), and thus it treats some of the impulsive and high
noise as features and preserves them (e.g., see the face of the Nicolo
model and the edge features on the Fandisk). In both examples,
GNF [Zhang et al. 2015] tends to smooth out small features and
preserve only the dominant features. On the other hand, NFN [Li
et al. 2020c] performs better than CNR and GNF on the Nicolo
model with fine-scale features. However, it performs worse than
GNF on the Fandisk model with sharp features. This agrees with
the findings above. Besides, it can be observed that DNF performs
worse for high-level noises. To show the stability of our method, we
also offer an example with the irregular face resolution corrupted
by two different types of noise with three different levels (first by
Gaussian noise of levels 0.1 and 0.3 in different regions and then
by the impulsive noise of level 0.5) in Fig. 8. It can be seen that

our GCNs produce a high-quality denoising result, which is further
improved by the normal refinement step.

Real-scan Models. For the comparisons on the real scans, we also
select the best results with fine-tuned groups of parameters for BNF,
𝐿0, GNF, and LR. Specifically, we set 𝜎𝑠 = 𝑙𝑒 , 𝜎𝑟 = 0.45, 𝑛𝑛 = 20,
and 𝑛𝑣 = 20 in BNF, 𝜆 = 0.06𝑙𝑒

2
𝛾 in 𝐿0, 𝜎𝑠 = 𝑙𝑒 , 𝜎𝑟 = 0.45, 𝑛𝑛 = 20,

and 𝑛𝑣 = 20 in GNF, and 𝜎𝑀 = 0.4, 𝑛𝑛 = 10, and 𝑛𝑣 = 10 in LR.
The quantitative comparisons are shown in Fig. 10. Our method

also consistently achieves the best results in all Kv1Data, Kv2Data,
and PrintData real-scan benchmarks. The representative results of
qualitative comparisons on Kv2Data and K-FData are shown in Fig.
13. Note that in these real scans, due to the low capture quality, the
fine features of the acquired models are often highly corrupted or
even destroyed by noise (e.g., the eyes and the mouth in the statue of
Fig. 13 have been somehow erased and are difficult to perceive even
for humans). Thus it is difficult for most of the denoising methods to
faithfully recover these features, so is ours. Nonetheless, our method
still receives the lowest reconstruction errors while also preserving
the features better than the previous methods. Moreover, the models
in Kv1Data, Kv2Data, and K-FData often do not exhibit complex
geometric features and are not very suitable for testing the limit of
the feature-preserving ability of different methods.

To further demonstrate the performance of our method, we apply
denoising on the proposed PrintData. As shown in Fig. 14, the scans
in our dataset often involve more geometric details than the scans
by Kinect but still suffer from noise of small scales. The Kv1Data,
Kv2Data, and K-FData use high-resolution scanned models (by an
Artec SpiderTM scanner) as ground truth and low-precision Kinect
scanned models as noisy input. In contrast, we take existing 3D
digital models as our ground truth and take the scanned models
as noisy input. Due to the quality of 3D printing (it may introduce
larger errors than 3D scanning), there are naturally small differences
between the printed models and the ground truth, e.g., the vertical
lines in the first row of Fig. 14 (the corresponding printed result
is shown in Fig. 6). Our results preserve the original details and
meanwhile have the lower errors. Also, our results have better per-
formance around the sharp features especially in CAD models (the
second row in Fig.14). Again, our approach consistently preserves
the features (e.g., in the ear of the Goblin and the bottom letters
shown in the third row of Fig. 14 and the head of the Stitch and
the guitar in the fourth frow of Fig. 14) better than the compared
methods.

Timing. Following [Wang et al. 2016], we train our network for
synthetic and real scans separately. Our method takes about 6-8
hours for training the network of synthetic models and 2-3 hours
for training the network of real scan models.
Our learning-based method is also efficient at runtime and its

performance comparisons with the previous learning-based meth-
ods on typical models are summarized in Table 1. The runtime
largely depends on the complexity of network architectures. It can
be seen that our method runs one magnitude faster than DNF [Li
et al. 2020b] and NormalF-Net [Li et al. 2020c] and two magnitudes
faster than NormalNet [Zhao et al. 2019b], which is based on 3D
convolutions on voxels. The MLP-based method [Wang et al. 2016]
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Noisy input LR CNR Our methodDNF NFN Ground truth

Fig. 11. Visual comparisons of various methods on the SysData benchmark dataset. Models: Joint, Sharp-Shpere, Carter, and Gargoyle with the Gaussian
noise of level 0.3, 0.3 and 0.3 (mean edge length), respectively. The average normal angular errors 𝐸𝑎 (from left to right) are: (top example) 28.65◦, 6.52◦, 2.22◦,
4.50◦, 5.02◦, and 1.86◦; (middle example) 33.17◦, 12.17◦, 8.03◦, 8.34◦, 8.84◦, and 4.39◦; (bottom example) 31.78◦, 7.56◦, 8.72◦, 7.98◦, 6.89◦, and 5.25◦.

Noisy input GNF CNR DNF NFN Our method Ground truth

Fig. 12. Visual comparisons of denoised results on models with extreme Gaussian or impulsive noise. Models: Fandisk with the Gaussian noise of level 0.6,
Nicolo with the impulsive noise of level 0.6 (both in percentage and strength). The average normal angular errors (from left to right) are: (1𝑠𝑡 row) 44.71◦, 6.72◦,
8.60◦, 7.52◦, 11.24◦, and 3.87◦; (2𝑛𝑑 row) 36.65◦, 6.74◦, 6.99◦, 6.82◦, 5.35◦, and 5.03◦.

receives the best performance due to its simplicity in the network
architecture (with only a few fully connected layers). Nonetheless,

our method achieves the best denoising quality while being well bal-
anced between the efficacy and efficiency among the learning-based
methods.

ACM Trans. Graph., Vol. 40, No. 4, Article 111. Publication date: August 2021.



111:10 • Shen et al.

Noisy input BNF GNF Our methodCNR NFN Ground truth

Fig. 13. The denoised Kinect v2 (1𝑠𝑡 row) single-frame meshes and Kinect Fusion models (2𝑛𝑑 row). From left to right: noisy input, denoised results of BNF
[Zheng et al. 2011], GNF [Zhang et al. 2015], CNR [Wang et al. 2016], NFN [Li et al. 2020c], ours and the GT. The average normal angular errors (from left to
right) are: (1𝑠𝑡 row) 20.85◦, 9.25◦, 7.96◦, 6.93◦, 7.51◦, and 6.58◦; (2𝑛𝑑 row) 17.89◦, 12.99◦, 11.95◦, 11.94◦, 12.15◦, and 11.61◦.

Noisy input LRGNF CNR Our methodDNF Ground truth

Fig. 14. Denoising real-scan meshes in PrintData. From left to right: noisy input, denoised results of GNF [Zhang et al. 2015], LR [Li et al. 2018], CNR [Wang
et al. 2016], DNF [Li et al. 2020b], ours, and the GT. The average normal angular errors (from left to right) are: (1𝑠𝑡 row) 10.88◦, 12.06◦, 12.27◦, 11.02◦,
10.74◦, and 10.54◦; (2𝑛𝑑 row) 18.08◦, 18.68◦, 17.96◦, 17.23◦, 17.67◦, and 17.08◦, (3𝑟𝑑 row) 16.16◦, 16.96◦, 18.80◦, 15.53◦, 15.96◦, and 14.95◦, (4𝑡ℎ row)
8.08◦, 7.50◦, 7.97◦, 6.11◦, 6.68◦, and 5.84◦.

7.4 Ablation Studies
In this subsection, we introduce the ablation studies to show the
impact of various algorithmic components of our method.

Patch Size. The size of patches 𝑟 in Eqn. (1) determines the recep-
tive filed of our GCNs, i.e., how much local geometry we can see in
a patch w.r.t. an entire mesh. This is an important hyper-parameter.
Essentially, 𝑟 should be set to a fixed value, e.g., 5% of the diagonal
length of the mesh’s bounding box to make the patch sizes consis-
tent. In our implementation, we set 𝑟 = 𝑘𝑎

1
2

𝑖
as a value relevant

to the triangle area to accommodate different surface samplings.
Besides, the input to our GCN should be padded into a fixed size of
nodes since we train the GCN with batches.
We test over six scales of patches, i.e., 𝑘 = 2, 3, 4, 6, 8, and 10 (𝑘

is defined in Sec. 4.1). For training in batches, we fix the number of

graph nodes to 16, 32, 64, 128, 256, and 512 according to the values
of 𝑘 (in case the number of facets within the patch does not equal
to the defined number, we perform random shrinkage or extension
to the local patch). Fig. 15 shows the corresponding performance of
these choices. We find that setting 𝑘 = 4 makes our GCN regress
well enough for the synthetic data, while setting 𝑘 = 8 is sufficient
for the real-scan Kinect data. A desired value of 𝑘 for the real-scan
Kinect data is larger, mainly because the surface resolution of the
real-scan data is often much larger than that of the synthetic ones
and the low-precision scans often bring in large-scale noise. The
experiments show that as long as the patch sufficiently covers local
regions, the performance is stable. A visualization effect of meshes
denoised with different patch sizes is shown in Fig. 19.
Since our patches are generated within a sphere, some noisy,

disconnected facets might be included in our patch graphs if the
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Table 1. Time comparisons with the state-of-the-art learning-based denois-
ing methods: NormalNet (NN) [Zhao et al. 2019b], CNR [Wang et al. 2016],
DNF [Li et al. 2020b], and NormalF-Net (NFN) [Li et al. 2020c]. The running
time is in seconds. Please find the correspondingmodels in the 2𝑛𝑑 in Fig. 11,
the rightmost one in Fig. 5 (f), the bottom one in Fig. 5 (h), and the 4𝑡ℎ in
Fig. 11.

Model Sharp-Sphere Fertility Eros Gragoyle
Faces 20882 27954 100000 171112

NN 836.12s 1132.42s 9163.24s 20763.28s
CNR 1.27s 1.71s 5.16s 10.04s
DNF 352.39s 494.94s 1912.74s 3376.69s
NFN 97.37s 109.63s 480.55s 975.05s
Ours 11.88s 12.97s 59.95s 145.96s

2 3 4 6 8 10
Patch Size Parameter k

Fig. 15. Impact of patch size parameter 𝑘 on different datasets. For the
synthetic data (SysData), a value of 4 leads to satisfactory results while for
the real scan data (i.e., Kv1Data, Kv2Data, K-FData), 𝑘 = 8 leads to sufficient
good results.

geometry around a facet has a broken or thin structure. Fig. 16 shows
such an example, where facets in the disconnect regions and on the
other side of the lens are presented in the same patch graph. Here
𝑘 = 8 is used. Nevertheless, unlike DNF [Li et al. 2020b], our method
is not sensitive to such thin or broken structures and produces
satisfactory results, as shown in Fig. 16. This is due to that our static
EdgeConv inherently exploits a mesh’s original structure and our
dynamic EdgeConv distinguishes which faces features are helpful,
thus making our method robust to such noisy representations.

Number of Graph Convolution Layers. To examine how the num-
ber of layers (i.e., how deep) of our GCN affects the results, we
conduct the following experiments. For the number of layers of
graph convolution, i.e., 𝐿𝑒 + 𝐿𝑑 , we test the following numbers: 4
(𝐿𝑒 , 𝐿𝑑 = 2), 6 (𝐿𝑒 , 𝐿𝑑 = 3), and 8 (𝐿𝑒 , 𝐿𝑑 = 4). We set 𝐿𝑒 = 𝐿𝑑 for
combinatorial simplicity. Fig. 17 plots the performance. We find that
the performance does not increase much after 6, showing that a
moderate size of GCN is sufficient in learning the local geometry

Noisy input Our result Ground truthDNF result

Fig. 16. A denoising result of a broken thin-structured model. Our method
is able to learn features well even from patches with disconnected graph
structures. The average normal angular errors 𝐸𝑎 are: 28.114◦ (input), 7.35◦

(DNF’s result), and 4.70◦ (our result).

Fig. 17. Ablation studies on various design choices of our algorithm.

Number of GCNs

Fig. 18. Test on the number of GCNs. Cascading a larger number of GCNs
does not necessarily increase the performance. In fact, it might over-smooth
certain fine-scale features when this number increases.

details of our aligned patches. Thus we use 𝐿𝑒 = 3 and 𝐿𝑑 = 3 for
our first GCN and 𝐿𝑒 = 2 and 𝐿𝑑 = 2 for the rest.

Number of GCNs. In this test, we show the necessity of multiple
GCNs. To do so, we randomly sample a set of representative models
in each category of the SysData benchmark dataset, including 4
CAD models, 4 smooth models, and 4 models with rich features
(0.1–0.3 levels of Gaussian noise are added to each model). We also
sample a similar set of models in the Kv2Data benchmark dataset.

ACM Trans. Graph., Vol. 40, No. 4, Article 111. Publication date: August 2021.



111:12 • Shen et al.

We then run the test on these sampled sets using 1 – 5 GCNs for
denoising. The quantitative comparisons of the performance are
shown in Fig. 18. It can be seen that the performance of adding more
GCNs stops improving when the number is greater than 2 for the
CAD models, smooth models, and the Kinect v2 models with low-
frequency features. For the models with rich fine features, adding
more GCNs might result in an over-smoothed effect since under
such circumstances, it is hard to distinguish those fine features from
noise. Hence, we use 2 GCNs for denoising in all our experiments.
Visual results of using 1 and 2 GCNs are shown in Fig. 19.

Patch Alignment. To show the influence of our patch alignment,
we replace our tensor voting with a spatial transform network (STN)
[Wang et al. 2019] module implemented in our GCN. STN is widely
used in point cloud processing works [Qi et al. 2017a; Wang et al.
2019] to eliminate spatial variations among the inputs. Fig. 17 (the
curve of “GCN with STN”) shows that STN does not work as well as
our normal tensor voting. This agrees with the finding that adding
a spatial transformation module does not improve the performance
much in [Qi et al. 2017a] and partially proves that spatial trans-
formation is indeed not easy to learn by neural networks. On the
other hand, if we do not use any alignment scheme, the perfor-
mance decreases (see the curve of “w/o any alignment” in Fig. 17).
Patch alignment may be influenced by the noise level, however, our
cascaded optimization may help progressively correct the errors
(Fig. 19).

Data Balancing. We also examine the influence of our data bal-
ancing strategy. Fig. 17 shows that the performance of our network
increases slightly due to the adopted data balancing strategy. Let
us denote 𝑟 as the ratio of the number of featured facets compared
to that of non-feature ones. Without data balancing, the value of
𝑟 is approximately 0.1. We test over 𝑟 = {0.5, 1, 1.5, 2, 5, 10} and
find that the performance increases very slightly after 𝑘 = 1.5 and
starts to decrease after 𝑟 = 10. Hence, throughout our experiments,
we use 𝑟 = 1.5 for data balancing. The data balancing allows more
effective learning of the underlying features.

Static and Dynamic Graph Convolutions. We train our GCNs with
both static and dynamic EdgeConv. To prove their effectiveness,
we examine the following alternatives: a network with static Edge-
Conv only and a network with dynamic EdgeConv only. Again, it
is witnessed that a combination of the two allows more informa-
tion flow from both neighboring graph nodes and these potentially
unconnected ones, thus leading to a more effective learning of the
features, as shown in Fig. 17. On the other hand, the network with
only EdgeConv leads to a better performance than the one with only
dynamic EdgeConv. This shows that the original graph structure in
the mesh is already very informative.

KNN. We use KNN to dynamically construct graph structures in
dynamic EdgeConv.We examine the influence of the performance on
different values of 𝐾 . We test 𝐾 = 4, 8, 12, and 16. The performance
of 𝐾 = 4 is similar to that of using static EdgeConv only and does
not improve after 𝐾 = 8. Thus we use 𝐾 = 8 throughout our
experiments.

Noisy input Reduced patch size 1 GCN Ground truth2 GCNs

Fig. 19. Comparative denoised results of different patch sizes (2𝑛𝑑 column:
𝑘 = 2) and different numbers of cascaded GCNs. The average angular errors
(from left to right) are: (1𝑠𝑡 row) 40.52◦, 5.58◦, 3.84◦, and 3.29◦; (2𝑛𝑑 row)
33.41◦, 5.61◦, 2.47◦, and 2.01◦.

7.5 Implementation Details
As mentioned before, our GCNs have different numbers of convo-
lution and MLP layers. In our experiments, the numbers of feature
channels are set as (64, 128, 128, 256, 256, 256, 1024, 512, 256, 64) in
the first GCN and (64, 128, 256, 256, 512, 256, 64) in the other GCNs.
In the training stage, we use Adam (𝛽1 = 0.9 and 𝛽2 = 0.999) for
optimization with the base learning rate 0.0001. We set the batch
size as 128 and train 24 epochs for the first GCN, and 16 epochs for
the rest. At runtime, we also regress normals in batches. Due to the
limited GPU memory, we set the batch size as 720 for patch size
𝑘 = 4 and set the batch size as 160 for patch size 𝑘 = 8.

8 LIMITATIONS
Our method has several limitations. First, since we learn the un-
known noise patterns frommassive data, the capacity of our method
is limited by the training data. Second, although our method is able
to generalize to unseen noise levels, it could still fail to recover the
underlying features once they are deeply corrupted by noise. Such
effects have been demonstrated in examples of this paper with ex-
tremely high noise (Fig. 12) or low quality noisy input from low-end
depth cameras (Fig. 13). Third, one assumption of our method is
that the geometry variation of the noise and that of the underlying
features are different so that both variations can be well modeled
by our GCNs. If this assumption is broken, our method would fail
to distinguish features from noise and tend to either smooth out
the features or preserve the noise. This is often the case with the
meshes containing many fine-scale features (Fig. 1). A more robust
and fine-grained classification module might be helpful but cannot
completely solve this ill-posed problem due to the inherent ambigu-
ity. Fourth, like most of the existing feature-preserving denoising
methods, our method does not change the mesh connectivity, thus
we cannot remove topological noise. Utilizing dynamic graph convo-
lution that explicitly updates the mesh connectivity may be helpful
to resolve this issue. We consider it as an orthogonal future work.
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9 CONCLUSION AND DISCUSSION
In this paper, we have presented the first GCN-based approach for
feature-preserving mesh denoising. Our method takes a triangular
mesh as input and employs multiple GCNs to progressively regress
the noise-free normals of the underlying surface patches. An es-
sential ingredient of our method is to represent the local surface
patches as graphs in the dual space of triangles. We show such an
intact representation allows convolution operations to be performed
directly on the mesh surface to effectively learn geometric features.
We employ both static and dynamic graph convolutions to aggre-
gate features from both connected neighbors and unconnected ones,
enabling a more effective feature learning. Extensive experimental
results show that our GCN models achieve the new state-of-the-art
results while being well balanced between efficacy and efficiency.

Although our current implementation relies on triangular meshes,
it can be easily adapted to other representations, for instance, quad
meshes. We are also interested in extending our method for denois-
ing unorganized point clouds or non-manifold meshes. For point
clouds, it might be tricky if we directly perform denoising on nor-
mals since the subsequent vertex updating step is not feasible if
the connectivity is unknown. One possibility is to regress the point
positions with dynamic EdgeConv [Rakotosaona et al. 2019], but in
a local and progressive manner. For non-manifold meshes, we may
require additional such training data and a new vertex updating
scheme. Moreover, we believe that our framework can be extended
for applications such as geometric texture synthesis, mesh feature
enhancement, mesh topological noise removal, and shape deforma-
tion. We also believe that the general framework of regressing a
complex function over a 3D surface in a cascaded and local man-
ner could be inspiring for various geometry tasks, such as surface
reconstruction [Jiang et al. 2020] and super-resolution.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their construc-
tive comments. This work was supported in part by the National
Key Research Development Program of China (2018YFE0100900)
and the NSF China (No. 61890954, 61772024, 61732016).

REFERENCES
Andrew Adams, Natasha Gelfand, Jennifer Dolson, and Marc Levoy. 2009. Gaussian

kd-trees for fast high-dimensional filtering. In ACM SIGGRAPH 2009 papers. 1–12.
Forest Agostinelli, Michael R Anderson, and Honglak Lee. 2013. Adaptive multi-column

deep neural networks with application to robust image denoising. In Advances in
Neural Information Processing Systems. 1493–1501.

Chandrajit L. Bajaj and Guoliang Xu. 2003. Anisotropic Diffusion of Surfaces and
Functions on Surfaces. ACM Trans. Graph. 22, 1 (2003), 4–32.

Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral networks
and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2014).

Harold C Burger, Christian J Schuler, and Stefan Harmeling. 2012. Image denoising: Can
plain neural networks compete with BM3D?. In 2012 IEEE conference on computer
vision and pattern recognition. 2392–2399.

U. Clarenz, U. Diewald, and M. Rumpf. 2000. Anisotropic Geometric Diffusion in Surface
Processing. In Proceedings of the Conference on Visualization ’00. 397–405.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional
neural networks on graphs with fast localized spectral filtering. In Advances in
neural information processing systems. 3844–3852.

James R. Diebel, Sebastian Thrun, and Michael Brünig. 2006. A Bayesian Method for
Probable Surface Reconstruction and Decimation. ACM Trans. Graph. 25, 1 (2006),
39–59.

Hanqi Fan, Yizhou Yu, and Qunsheng Peng. 2010. Robust feature-preserving mesh
denoising based on consistent subneighborhoods. IEEE Transactions on Visualization

and Computer Graphics 16, 2 (2010), 312–324.
Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao. 2019. MeshNet: Mesh

neural network for 3D shape representation. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33. 8279–8286.

Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. 2003. Bilateral Mesh Denoising.
In ACM SIGGRAPH 2003 Papers. 950–953.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. 2019. MeshCNN: A Network with an Edge. ACM Trans. Graph. 38, 4
(2019).

Lei He and Scott Schaefer. 2013. Mesh Denoising via L0 Minimization. ACM Trans.
Graph. 32, 4 (2013).

Chiyu Max Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner,
and Thomas Funkhouser. 2020. Local Implicit Grid Representations for 3D Scenes.

Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. 2017.
Deep convolutional neural network for inverse problems in imaging. IEEE Transac-
tions on Image Processing 26, 9 (2017), 4509–4522.

Thouis R Jones, Frédo Durand, and Mathieu Desbrun. 2003. Non-iterative, feature-
preserving mesh smoothing. In ACM SIGGRAPH 2003 Papers. 943–949.

Kai-Wah Lee andWen-PingWang. 2005. Feature-preservingmesh denoising via bilateral
normal filtering. In Ninth International Conference on Computer Aided Design and
Computer Graphics (CAD-CG’05). 6–pp.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. Deepgcns: Can
gcns go as deep as cnns?. In Proceedings of the IEEE International Conference on
Computer Vision. 9267–9276.

Xianzhi Li, Ruihui Li, Guangyong Chen, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-
Ann Heng. 2020a. A Rotation-Invariant Framework for Deep Point Cloud Analysis.
CoRR abs/2003.07238 (2020).

Xianzhi Li, Ruihui Li, Lei Zhu, Chi-Wing Fu, and Pheng-Ann Heng. 2020b. DNF-
Net: a Deep Normal Filtering Network for Mesh Denoising. IEEE Transactions on
Visualization and Computer Graphics (2020).

Xianzhi Li, Lei Zhu, Chi-Wing Fu, and Pheng-Ann Heng. 2018. Non-Local Low-Rank
Normal Filtering for Mesh Denoising. Comput. Graph. Forum 37, 7 (2018), 155–166.

Zhiqi Li, Yingkui Zhang, Yidan Feng, Xingyu Xie, Qiong Wang, Mingqiang Wei, and
Pheng-Ann Heng. 2020c. NormalF-Net: Normal filtering neural network for feature-
preserving mesh denoising. Computer-Aided Design (2020), 102861.

Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. 2015.
Geodesic convolutional neural networks on riemannian manifolds. In Proceedings
of the IEEE international conference on computer vision workshops. 37–45.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. 2017. Geometric deep learning on graphs and manifolds using
mixture model cnns. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 5115–5124.

Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,
Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. 2011. KinectFusion: Real-Time Dense Surface Mapping and Tracking. In
Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented
Reality (ISMAR ’11). 127–136.

Charles R. Qi, Hao Su, KaichunMo, and Leonidas J. Guibas. 2017a. PointNet: Deep Learn-
ing on Point Sets for 3D Classification and Segmentation. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017b. PointNet++:
Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA. 5099–5108.

Marie-Julie Rakotosaona, Vittorio La Barbera, Paul Guerrero, Niloy J. Mitra, and Maks
Ovsjanikov. 2019. POINTCLEANNET: Learning to Denoise and Remove Outliers
from Dense Point Clouds. CoRR abs/1901.01060 (2019).

Jonas Schult, Francis Engelmann, Theodora Kontogianni, and Bastian Leibe. 2020.
DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes.
CoRR abs/2004.01002 (2020).

Yuzhong Shen and Kenneth E Barner. 2004. Fuzzy vector median-based surface smooth-
ing. IEEE Transactions on Visualization and Computer Graphics 10, 3 (2004), 252–265.

Takafumi Shimizu, Hiroaki Date, Satoshi Kanai, and Takeshi Kishinami. 2005. A new
bilateral mesh smoothing method by recognizing features. In Ninth International
Conference on Computer Aided Design and Computer Graphics (CAD-CG’05). 6–pp.

Martin Simonovsky and Nikos Komodakis. 2017. Dynamic edge-conditioned filters
in convolutional neural networks on graphs. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 29–38.

Vladimiros Sterzentsenko, Leonidas Saroglou, Anargyros Chatzitofis, Spyridon Ther-
mos, Nikolaos Zioulis, Alexandros Doumanoglou, Dimitrios Zarpalas, and Petros
Daras. 2019. Self-supervised deep depth denoising. In Proceedings of the IEEE Inter-
national Conference on Computer Vision. 1242–1251.

Xianfang Sun, Paul L Rosin, Ralph Martin, and Frank Langbein. 2007. Fast and effective
feature-preserving mesh denoising. IEEE Transactions on Visualization and Computer
Graphics 13, 5 (2007), 925–938.

ACM Trans. Graph., Vol. 40, No. 4, Article 111. Publication date: August 2021.



111:14 • Shen et al.

Tolga Tasdizen, Ross Whitaker, Paul Burchard, and Stanley Osher. 2002. Geometric
Surface Smoothing via Anisotropic Diffusion of Normals. In Proceedings of the
Conference on Visualization ’02. 125–132.

Diego Valsesia, Giulia Fracastoro, and EnricoMagli. 2019. Learning Localized Generative
Models for 3D Point Clouds via Graph Convolution. In International Conference on
Learning Representations.

Jun Wang, Xi Zhang, and Zeyun Yu. 2012. A cascaded approach for feature-preserving
surface mesh denoising. Computer-Aided Design 44, 7 (2012), 597–610.

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-CNN:
Octree-Based Convolutional Neural Networks for 3D Shape Analysis. ACM Trans.
Graph. 36, 4, Article 72 (2017), 11 pages.

Peng-Shuai Wang, Yang Liu, and Xin Tong. 2016. Mesh Denoising via Cascaded Normal
Regression. ACM Trans. Graph. 35, 6 (2016).

Ruimin Wang, Zhouwang Yang, Ligang Liu, Jiansong Deng, and Falai Chen. 2014.
Decoupling Noise and Features via Weighted L1-Analysis Compressed Sensing.
ACM Trans. Graph. 33, 2 (2014).

YueWang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. 2019. Dynamic Graph CNN for Learning on Point Clouds. ACM Trans.
Graph. 38, 5 (2019).

MWei, X Guo, J Huang, Haoran Xie, H Zong, R Kwan, FL Wang, and J Qin. 2019a. Mesh
defiltering via cascaded geometry recovery. Comput. Graph. Forum 38, 7 (2019),
591–605.

Mingqiang Wei, Jin Huang, Xingyu Xie, Ligang Liu, Jun Wang, and Jing Qin. 2019b.
Mesh denoising guided by patch normal co-filtering via kernel low-rank recovery.
IEEE transactions on visualization and computer graphics 25, 10 (2019), 2910–2926.

Mingqiang Wei, Jinze Yu, Wai-Man Pang, Jun Wang, Jing Qin, Ligang Liu, and Pheng-
Ann Heng. 2015. Bi-normal filtering for mesh denoising. IEEE transactions on
visualization and computer graphics 21, 1 (2015), 43–55.

Junyuan Xie, Linli Xu, and Enhong Chen. 2012. Image denoising and inpainting with
deep neural networks. InAdvances in neural information processing systems. 341–349.

Sunil Kumar Yadav, Ulrich Reitebuch, and Konrad Polthier. 2019. Robust and high
fidelity mesh denoising. IEEE transactions on visualization and computer graphics 25,
6 (2019), 2304–2310.

Hirokazu Yagou, Yutaka Ohtake, and Alexander Belyaev. 2002. Mesh smoothing via
mean and median filtering applied to face normals. In Geometric Modeling and
Processing. Theory and Applications. GMP 2002. Proceedings. 124–131.

Hirokazu Yagou, Yutaka Ohtake, and Alexander G Belyaev. 2003. Mesh denoising
via iterative alpha-trimming and nonlinear diffusion of normals with automatic
thresholding. In Proceedings Computer Graphics International 2003. 28–33.

Shi Yan, Chenglei Wu, Lizhen Wang, Feng Xu, Liang An, Kaiwen Guo, and Yebin Liu.
2018. Ddrnet: Depth map denoising and refinement for consumer depth cameras
using cascaded cnns. In Proceedings of the European conference on computer vision
(ECCV). 151–167.

Shin Yoshizawa, A. Belyaev, and H. . Seidel. 2006. Smoothing by Example: Mesh Denois-
ing by Averaging with Similarity-Based Weights. In IEEE International Conference
on Shape Modeling and Applications 2006 (SMI’06). 9–9. https://doi.org/10.1109/SMI.
2006.38

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. 2017. Beyond
a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE
Transactions on Image Processing 26, 7 (2017), 3142–3155.

Wangyu Zhang, Bailin Deng, Juyong Zhang, Sofien Bouaziz, and Ligang Liu. 2015.
Guided mesh normal filtering. Comput. Graph. Forum 34, 7 (2015), 23–34.

Wenbo Zhao, Xianming Liu, Shiqi Wang, Xiaopeng Fan, and Debin Zhao. 2019a. Graph-
based Feature-Preserving Mesh Normal Filtering. IEEE Transactions on Visualization
and Computer Graphics (2019).

Wenbo Zhao, Xianming Liu, Yongsen Zhao, Xiaopeng Fan, and Debin Zhao. 2019b.
Normalnet: Learning based guided normal filtering for mesh denoising. CoRR
abs/1903.04015 (2019).

Youyi Zheng, Hongbo Fu, Oscar Kin-Chung Au, and Chiew-Lan Tai. 2011. Bilateral
normal filtering for mesh denoising. IEEE Transactions on Visualization and Computer
Graphics 17, 10 (2011), 1521–1530.

ACM Trans. Graph., Vol. 40, No. 4, Article 111. Publication date: August 2021.

https://doi.org/10.1109/SMI.2006.38
https://doi.org/10.1109/SMI.2006.38

	Abstract
	1 Introduction
	2 Related Work
	2.1 Mesh Denoising
	2.2 Graph Convolutional Networks

	3 Algorithm Overview
	4 Patch Generation and Alignment
	4.1 Patch Selection
	4.2 Patch Alignment via Tensor Voting
	4.3 Graph Representation

	5 Normal Regression
	5.1 Graph Convolutional Network
	5.2 Data Generation

	6 Surface Denoising With Predicted Normals
	6.1 Normal Refinement
	6.2 Vertex Updating

	7 Experiments
	7.1 Dataset
	7.2 Error Metrics
	7.3 Results and Comparisons
	7.4 Ablation Studies
	7.5 Implementation Details

	8 Limitations
	9 Conclusion and Discussion
	Acknowledgments
	References

