
Front. Comput. Sci., 2017, 11(2): 332–346

DOI 10.1007/s11704-016-5465-y

Continuous optimization of interior carving in 3D fabrication

Yue XIE1, Ye YUAN1, Xiang CHEN 1, Changxi ZHENG2, Kun ZHOU1

1 State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, China

2 Columbia University, New York NY 10027, USA

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Abstract In this paper we propose an optimization frame-

work for interior carving of 3D fabricated shapes. Interior

carving is an important technique widely used in industrial

and artistic designs to achieve functional purposes by hollow-

ing interior shapes in objects. We formulate such functional

purpose as the objective function of an optimization prob-

lem whose solution indicates the optimal interior shape. In

contrast to previous volumetric methods, we directly repre-

sent the boundary of the interior shape as a triangular mesh.

We use Eulerian semiderivative to relate the time derivative

of the object function to a virtual velocity field and iteratively

evolve the interior shape guided by the velocity field with sur-

face tracking. In each iteration, we compute the velocity field

guaranteeing the decrease of objective function by solving

a linear programming problem. We demonstrate this general

framework in a novel application of designing objects float-

ing in fluid and two previously investigated applications, and

print various optimized objects to verify its effectiveness.

Keywords computer graphics, 3D printing, interior carv-

ing, shape optimization, Eulerian semiderivative

1 Introduction

Interior shape carving has been proved as an effective method

for achieving various design purposes without affecting the

exterior appearances of objects. It has widespread use in me-

chanical and industrial designs for satisfying functional re-

quirements, decreasing product weights and reducing manu-

Received November 4, 2015; accepted March 28, 2016

E-mail: xchen.cs@gmail.com

facturing costs. Despite its effectiveness, hollowing an ob-

ject, even for a simple goal like adjusting the center of mass,

requires a trial-and-error process, which is often time con-

suming. For example, it is hard, if not impossible, to con-

trol the position of the center of mass by manually adjust-

ing the hollowed shape. Recent research [1,2] has seen com-

putational methods proposed to overcome such difficulties.

Through voxelization-based representation and optimization,

such methods are successfully applied to design statically

standing objects and dynamically spinning tops.

While voxelization is an effective spatial discretization for

shapes, this representation has essentially a binary nature: an

voxel is either fully occupied by printing material or not. As

a result, the boundary of a voxel grid is always rugged no

matter how fine the voxelization is, and a fine-granular voxel

grid is always needed to achieve high approximation accu-

racy. On the other hand, the interior carving is the common

requirements of various design problems. To minimize the

application-specific customization efforts, it is necessary to

keep a unique interior carving method for different computa-

tional design tasks.

In this paper, we propose a general optimization frame-

work for interior carving that represents the interior bound-

ary as an explicit triangular mesh. Unlike the volumetric dis-

cretization, either voxel grid or tetrahedral mesh, adopted

in previous methods [1–3], our optimization framework

involves only the numerical discretization on the carving

boundary using triangular meshes. This is advantageous to

the accuracy of carving boundary. We show that our method

often obtains lower optimization energies compared with the

spin-it method, for various application scenarios (see com-

parisons in Section 5). Our method not only reduces the de-

Yue XIE et al. Continuous optimization of interior carving in 3D fabrication 333

grees of freedom necessary for shape representation and op-

timization, but also enables the direct controlling of surface

properties of the carving boundary, which is not accessible

with volumetric discretization. Figure 1 (b) shows an exam-

ple of smoothness control for the interior surface. Based on

the surface discretization, we present a novel continuous opti-

mization approach. We formulate the design purposes as ob-

jective functions based on surface integrals, and then itera-

tively advance the boundary mesh to minimize the objective

functions. Specifically, we develop an algorithm based on Eu-

lerian semiderivative to compute an optimal velocity field in

which the triangular mesh is deformed. Such deformation en-

sures that the objective function is decreased fastest, i.e., in

a gradient descend manner. Using this optimization strategy,

the boundary of the interior voids is continuously varied to

satisfy the design requirements.

Our framework is versatile and flexible. A variety of design

constraints for different problems can be easily incorporated.

We present a new application of designing floating objects,

whose usage ranges from ocean sciences to consumer prod-

ucts. We formulate the buoyancy related objective function

and constraints and optimize the interior carving to balance

an object floating on liquid surface with specific pose (Fig.

1(c)). Using an FDM 3D printer, we fabricate the optimized

objects and demonstrate that our optimization method is able

to generate interior carved shapes accurately satisfying the

design constraints. We also apply our optimization method

to the design for statically balanced and spinnable objects.

Experiments on several examples are executed to show the

effectiveness of the continuous optimization framework.

2 Related work

The design optimization technologies have drawn a lot of

attention in the structural and mechanical engineering field.

This line of research exerts and optimizes varying variations

such as feature size [4], boundary geometry [5,6], structural

topology [7,8] or mixed types [9], to satisfy specific engi-

neering requirements such as product states in response to

external loads. We refer to the surveys [10,11] for a compre-

hensive discussion of structural optimization in engineering.

With the increasing popularity of the additive manufac-

turing (or 3D printing) technologies, the computer graph-

ics community shows growing research interests in design-

ing physically fabricable shapes. Several methods are pre-

sented to decompose 3D shapes to facilitate the fabricating

process [12,13], or fold 3D shapes for packing [14]. Re-

search efforts have also been made to bring virtual characters

into real world, e.g., deformable objects [15–17], articulated

models [18,19] and mechanical characters [20,21]. Another

subset of works focused on the physical soundness of fab-

ricated shapes, like the plank-based furniture [22], the self-

supporting surfaces [23–25], cost-effective printing [26,27],

structural weakness detection and reinforcement [28–30].

Recently, optimizing mass properties draws the attention

of researchers. Prévost et al. [1] adopted grid of voxels to dis-

cretize the interior volume of an object and used a heuristic

optimization method to adjust the center of mass of the ob-

ject. Bächer et al. [2] used an adaptive octree to refine the vox-

elization and solved for the binary states of the voxels as the

optimal solution for adjusting the rotational dynamic proper-

ties of rigid bodies. Christiansen et al. [3] proposed a tetrahe-

dral mesh based hollowing optimization for balancing static

objects. Unlike these previous methods which adopt volu-

metric discretization, our interior carving method is purely

based on surface discretization and integrals. We represent

the boundary of the interior void as a triangular mesh, which

has much less degrees of freedom to handle and is more ac-

curate for complex geometries. In addition, surface properties

such as the smoothness of the carving shape can be explicitly

controlled.

As a concurrent work, Musialski et al. [31] proposed a

shape optimization method which offsets the outer surface of

an object to generate an interior surface as the boundary of

Fig. 1 An example of our floatation application. (a) Unhollowed model (before interior carving, the model sinks); (b) interior carving (we
carve an interior shape generated by our algorithm inside the model); (c) hollowed model (after the interior shape is hollowed, the model floats
in the water with a specific pose)

334 Front. Comput. Sci., 2017, 11(2): 332–346

the interior voids. Their method utilizes the manifold har-

monics to construct a set of low-frequency basis of the sur-

face offset space and then solves a reduced optimization prob-

lem. Although the method increases the robustness and re-

duces the optimization complexity with an elaborately chosen

subspace, a robust skeleton is required for computing the off-

set space and the final carving shape is limited to it. Instead,

our continuous optimization method utilizes surface tracking

to directly advance the surface of the interior voids and adap-

tively changes the mesh structure, such that our carving shape

can be more freeform.

3 Optimization of interior carving

In this section we present the general framework of our algo-

rithm for interior carving optimization. It is then reified with

specific formulations for different applications in Section 4.

The input of our algorithm is the outer surface of a 3D

model and an initial surface representing the boundary of

the interior shape to carve, and both are 2D manifolds

represented by triangular meshes. Our algorithm iteratively

changes the geometry and possible topology of the interior

shape to minimize an objective function while satisfying con-

straints. In each iteration, a linear programming problem is

solved for a virtual velocity field, which is then utilized to

advance the boundary of the interior shape. The output is

an triangular mesh representing the optimized interior shape

which is ready to be used in 3D fabrication. This optimiza-

tion framework is general, as a large class of objectives and

constrains can be incorporated in a unified way.

The entire computation is performed directly on triangu-

lar meshes, and hence no volumetric discretization is needed.

The whole method is simple to implement, as outlined in Al-

gorithm 1. In the following subsections, we describe each

step of the algorithm in detail.

Algorithm 1 Gradient descent optimization for interior carving

Require: initial interior shape Ω
procedure CarvingOptimization(Ω)
ΔJ ←∞
while ΔJ > ε do

compute P(x) at vertices using Eq. (13). Section 3.2
solve LP problem Eq. (17) for vn . Section 3.3
advance Ω as Ω + vnnΔt. Section 3.4
update J and the relative change ΔJ.

end while
end procedure

3.1 Optimization problem formulation

For a hollowed solid body (Fig. 2), as in the inset, its center

Fig. 2 A hollowed solid body

of mass c is computed as

c =

∫
V
ρsxdv −

∫
Ω

ρsxdv
∫

V
ρsdv −

∫
Ω

ρsdv
, (1)

where ρs is the density of the solid body, x is position coor-

dinate, V is the volume of the whole input body and Ω rep-

resents the volume of the interior shape to hollow. To move

c towards a constant target point p, we can define a simple

objective function J measuring the squared distance between

c and p,

J = |c − p|2. (2)

By optimizing the shape of the hollowed void Ω, we mini-

mize J thus accomplish the adjustment of the center of mass.

The fundamental term in such objective functions is the

volume integral (see Eq. (1)). If we denote the volume inte-

gral as

I(f ;V) =

∫
V

f (x)dv, (3)

where f (x) could be any scalar function defined on the vol-

ume V , then Eq. (1) can be rewritten as

cα =
I(ρsα;V) − I(ρsα;Ω)

I(ρs;V) − I(ρs;Ω)
, where α = x, y, z, (4)

and the objective function Eq. (2) can be expressed as

J = J(I(ρs x;Ω), I(ρsy;Ω), I(ρsz;Ω), I(ρs;Ω)), (5)

which is a function of Ω.

A large class of objective functions can be expressed in a

form similar to Eq. (5), as for the applications in Section 4.

For such applications, we seek an optimized interior shape

Ω for carving to minimize an objective function J. Thus the

general form of our optimization problem is defined as

min
Ω

J(I1, I2, . . . , In). (6)

The interior shape Ω should also satisfy certain constraints,

such as surface thickness requirement and volume preserva-

tion. Below we first present an algorithm to minimize the ob-

jective function Eq. (6) in Section 2, and then describe how

to incorporate hard constraints in Section 3.

3.2 Gradient descent using Eulerian semiderivative

We now present an approach to solve the optimization prob-

lem Eq. (6). Following the general spirit of gradient descent,

Yue XIE et al. Continuous optimization of interior carving in 3D fabrication 335

we iteratively changes the interior shape by advancing its

boundary to decrease the objective function until the change

of the objective function drops below a threshold. As in any

gradient descent method, the fundamental question is how to

find the gradient descent direction, which in our case means

how to find the fastest way of advancing the boundary to de-

crease the objective function.

To find the gradient descent direction, we borrow a con-

cept named Eulerian semiderivative from shape optimization

[32]. Considering a volume shape Ω changes with time, the

Eulerian semiderivative of a functional defined on Ω, such as

our volume integral Eq. (3), is defined as

dI(f ;Ω0) = lim
t↓0

I(f ;Ωt) − I(f ;Ω0)

t
, (7)

whereΩ0 is the shape ofΩ at time 0 andΩt is its shape at time

t. Similar to a derivative which tells us how fast a function

changes with respect to a variable, the Eulerian semideriva-

tive measures how fast I(f ,Ω) changes with respect to the vol-

ume shape Ω.

Assume Ω is deformed by a velocity field

v(x) =
∂x
∂t
, where x ∈ Ω, (8)

where x is the position of an arbitrary point in Ω and v(x) is

the velocity of that point. It is proven in Delfour and Zolésio

[32] that if the velocity field v is smooth enough, the Eulerian

semiderivatives of I at time 0 can be calculated as

dI(f ;Ω0) =

∫
Γ0

f (x)v(x) · n(x)dΓ, (9)

where Γ0 represents the boundary of Ω0 and n(x) is the sur-

face normal at x. Under the same smooth velocity field as-

sumption, a composite functional J such as Eq. (6) can be

calculated using the chain rule

dJ(I1, I2, . . . , In) =
n∑

k=1

∂J
∂Ik

∣∣∣∣∣
Ω0

dIk. (10)

For the carving applications, Eq. (9) and Eq. (10) provide

us a way to relate the derivative of an objective function J to

a velocity field v which is defined on the boundary Γ of the

interior carving shapeΩ. Instead of dealing with the shape of

Ω directly, we decrease J by finding a v that decreases dJ and

then advance Γ with such v.

In Eq. (9), what really matters is the projection of v(x) on

n(x). Thus instead of an arbitrary velocity field, we always

advance the boundary in a velocity field normal to the inte-

rior boundary

v(x) = vn(x)n(x), (11)

where vn(x) is a scalar field representing the normal velocity

magnitude, as shown in Fig. 3. This is similar to a surface

normal flow in differential geometry [33,34].

Fig. 3 Evolution of interior carving boundary in a single gradient-descent
step. (a) Before an iteration step (normal velocity is defined on the bound-
ary); (b) after an iteration step (a surface normal flow is used to evolve the
carving boundary)

Putting all these together, we relate the Eulerian

semiderivative of the objective function J to a scalar field vn

defined on Γ as

dJ(I1, I2, . . . , In) =
∫
Γ0

P(x)vn(x)dΓ, (12)

where

P(x) =
n∑

k=1

fk(x)
∂J
∂Ik

∣∣∣∣∣
Ω0
, (13)

and advance the interior boundary by the normal velocity

field vnn to decrease J. If there are no constraints applied to

vn, we can simply set vn(x) as −P(x) which always leads to

a non-positive dJ. We show in Appendix A that the vn(x) de-

creases J fastest, i.e., the gradient descent direction, is indeed

consistent with −P(x). In practice, there are always additional

constraints that need to be satisfied. Therefore we solve a con-

strained optimization problem in each iteration to find the vn

leading to the minimal dJ (see Section 3.3).

After vn is computed, the boundary Γ is advanced as

x = x + vn(x)n(x)Δt, ∀x ∈ Γ, (14)

where Δt is the timestep size. Such boundary advancing fin-

ishes a gradient descent step and moves the algorithm on to

the next iteration.

3.3 Constrained optimization

In many applications, the optimized objects also need to sat-

isfy certain constraints. As demonstrated in Section 4, many

application specific requirements can be formulated as lin-

ear equalities and inequalities with respect to the scalar field

vn. In general, our optimization can incorporate a set of con-

336 Front. Comput. Sci., 2017, 11(2): 332–346

straints expressed as
∫
Γ

Ai(x)vn(x)dΓ = Ci, i = 1, 2, . . . ,Na,

∫
Γ

B j(x)vn(x)dΓ � D j, j = 1, 2, . . . ,Nb,

(15)

where Ai and B j are known functions, and Ci, D j are con-

stants. Consequently, we need to find a vn which satisfies

these constraints and meanwhile points as closely as possible

toward the gradient descent direction. Concretely, we solve

the optimization problem

min
vn

∫
Γ0

P(x)vn(x)dΓ as in Eq. (12)

s.t. all the constraints Eq. (15),
(16)

to obtain such vn.

Surface discretizaton In practice, the interior boundary Γ

is represented by a triangle mesh and the surface integrals are

discretized as weighted summations over all triangles. There-

fore we discretize P(x), vn(x), Ai(x), i = 1, 2, . . . ,Na and

B j(x), j = 1, 2, . . . ,Nb, by stacking their values on vertices

into vectors, as P, vn, Ai and B j respectively. The solution

to Eq. (16) is then approximated by solving a standard linear

programming (LP) problem:

min P · vn

s.t. Ai · vn = Ci, i = 1, 2, . . . ,Na,

B j · vn � D j, j = 1, 2, . . . ,Nb.

(17)

Such a linear programming problem can be efficiently solved

in polynomial time [35]. In our implementation, we adopt the

widely used library GLPK [36] to solve these problems.

3.4 Interior surface advancing

In each iteration step, our algorithm advances the inte-

rior boundary Γ with the computed normal velocity field

vn(x)n(x).

Surface tracking Advancing a surface using a velocity field

is a typical yet nontrivial surface tracking problem, since the

topology changes such as merging and pinching-offmay oc-

cur during the surface advancement. A widely used approach

is the fast marching algorithm which represents the surface

implicitly using level-sets [34,37]. But this method needs to

extrapolate the velocity field from the surface into the en-

tire volume, and its inherent numerical dissipation renders

the equality constraints hard to satisfy precisely.

We use the explicit surface tracking approach [38] recently

developed for surface tracking in fluid simulation. It advances

a triangular surface using explicit forward Euler methods, and

then carefully handles the collisions and topology changes.

Step length To ensure robust gradient descent and surface

tracking, we set limits on how much the interior shape can

change in each iteration step. Specifically, we enforce an up-

per limit u for the distance a vertex can advance in a single

step, by using box constraints

− u
Δt
� vn(x) �

u
Δt
, ∀x ∈ Γ. (18)

As in a standard gradient descent process, if the objective

function increases after the surface advancement, we roll

back the surface changes and try again with a halved upper

limit (1/2)u. When u is successively decreased to a value be-

low a minimum step threshold ut, the main loop terminates.

Our implementation adopts an initial upper limit u0 =

(1/500)D where D is the diameter of the model. The thresh-

old ut is set as (1/8)u0. The choice of timestep size Δt is ir-

relevant to the optimization result, and we simply set it as the

constant 1.0.

4 Applications

In this section, we apply the general optimization algorithm

developed in Section 3 to a novel application for designing

floating objects and two existing applications investigated in

previous works. We first introduce some common notations

and constraints used in all three applications, and then formu-

late the specific objective functions and constraints for each

application respectively.

4.1 Common settings

Notations For convenience, we use the notation s f to repre-

sent the volume integration on the hollowed object

s f = I(ρs f ;V) − I(ρs f ;Ω). (19)

Then the formula of the center of mass Eq. (4) can be com-

pactly written as

cα =
sα
s1
, where α = x, y, z. (20)

Here s1 means the integrand f is the constant 1, and thus s1

equals the mass of the hollowed object. These terms are fre-

quently used in all three applications.

The Eulerian semiderivatives of these basic terms are

listed in the Appendix B. With these terms, the Eulerian

semiderivatives of the objective functions defined in this sec-

tion can be derived in a straightforward manner using the

chain rule. The only exception is the Eq. (38) in Section 4.3,

Yue XIE et al. Continuous optimization of interior carving in 3D fabrication 337

whose Eulerian semiderivative is complex and is thus listed

in Appendix B.

Coordinate frame In all applications we assume a global

coordinate frame whose x/y axis lies in the horizontal plane

and z axis points to the upward direction.

Thickness requirement To ensure that the results can be

fabricated successfully by a 3D printer, we use inequality

constraints to enforce that the wall thickness of the hollowed

models is no less than a specified threshold m.

Let xi, ni and vn,i denote respectively the position, normal

direction, and normal velocity magnitude of a vertex vi on

the boundary triangle mesh, and φ(xi) denotes the distance

of vi from its position xi to the outer surface of the object.

We require that every vertex, after each forward-Euler step of

surface advancing, has a distance value larger than m

φ(xi + vn,iniΔt) � m. (21)

For small displacements, we can linearize this constraint and

obtain

φ(xi) + ∇φ(xi) · nivn,iΔt � m. (22)

Here φ(xi) and ∇φ(xi) can be easily computed using standard

approaches such as Kd-tree and numerical methods such as

central difference. Equation (22) is used in each iteration as

an inequality constraint.

Initial interior shape To start the algorithm in Section 3, we

construct an initial interior shape by shrinking the input outer

mesh. Using the surface tracking method as in Section 3.4,

we advance the outer mesh along the negative normal direc-

tions by a distance of the thickness requirement m to obtain

such initial interior boundary.

Surface properties Representing the interior boundary as

an explicit triangular mesh enables us to exert extra controls

on the carving surface. For example, we add an energy term

measuring the smoothness of the boundary surface into our

objective functions, by adopting the Laplacian coordinates

[39]:

EL = |Lx|2 , Li j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, i = j;

− 1
di
, v j ∈ N(vi);

0, otherwise,

(23)

where L is the Laplacian matrix, N(vi) is the 1-ring neigh-

borhood of vi, and di is the total number of vertices in N(vi).

The time derivative of EL is computed as

dEL

dt
= l · vn, lk = 2

∑
i

∑
j

LikLi jx j · nk. (24)

Equation (24) can be easily added into the linear system

Eq. (16) as an additional energy term. We show how this

energy term can affect boundary smoothness with different

weights in Section 5.

4.2 Design of floating objects

As a novel application, we apply our general algorithm in-

troduced in Section 3 to the design of objects floating in

fluid. Since the earliest man-made boats crafted at prehistoric

times [40], floating bodies have profoundly influenced hu-

man society, ranging from marine science and ocean indus-

tries to consumer products. Although lots of tools have been

established to well control the floating states and stabilities

of structured shapes such as ships and offshore equipments,

the design of arbitrarily shaped floating objects remains to be

a laborious trial-and-error process. Very recently, Musialski

et al. [31] applied their subspace surface offsetting method

to this application, but they assumed the objects were fully

immersed in the fluid. In our work, we allow users to design

objects floating above the fluid level by specifying its pose

and immersion height.

The input of the application is a triangle mesh representing

the outer surface and pose of a floating object, plus its im-

mersion depth h (see Fig. 4(a)). Given the outer surface and

the immersion height, the volume of the immersed part of the

object is determined (the green part). The buoyancy force B

and the center of buoyancy b are computed as

B = I(ρ f ;V f)g, (25)

and

bα =
I(ρ fα;V f)

I(ρ f ;V f)
, where α = x, y, z, (26)

where ρ f is the density of the fluid, g is the gravity accelera-

tion constant and V f is the volume of the immersed part.

The expected output is a hollowed object that floats in fluid

with the desired immersion depth h and the same pose as

the input mesh. We compute the interior (hollowed) shape

by three successive steps. In each step we solve an individual

optimization problem while preserving the results of previous

steps.

Step 1 To make the object float in the fluid with the speci-

fied immersion depth h, we first balance the magnitude of the

hollowed object’s gravity against the magnitude of the buoy-

ancy force. Therefore, we minimize the difference between

the gravity and the buoyancy force

Jvolume =
1
2

(I(ρs;V)g − I(ρs;Ω)g − B)2, (27)

338 Front. Comput. Sci., 2017, 11(2): 332–346

Fig. 4 The workflow of floatation application (The object is translated such that the center of buoyancy (COB) is put at the origin of the world
coordinatesystem. The target volume is the model volume required to balance gravity and buoyancy). (a) Input; (b) initial interior shapes; (c)
after balancing gravity and buoyancy force; (d) after aligning COM and COB; (e) after lowering down COM; (f) print

such that the thickness constraint Eq. (22) are satisfied at the

same time. An example of the interior shape after this step is

shown in Fig. 4(c).

Step 2 To make the object float in the same pose as the input

mesh, the center of mass of the hollowed object must align

vertically with the center of buoyancy. Thus we set the ob-

jective function of Step 2 as the squared distance between the

two centers in the horizontal plane

Jalign =
1
2

(cx − bx)2 +
1
2

(cy − by)2. (28)

In addition to the thickness constraint Eq. (22), we also need

to preserve the force balance we reached in Step 1. This

requires the weight of the hollowed object to be kept un-

changed, which equals a vanishing Eulerian semiderivative

of I(ρs;Ω)

dI(ρs;Ω) = ρs

∫
Γ

vn(x)dΓ = 0. (29)

Although Eq. (29) is treated as a hard constraint at each itera-

tion, the gravity of the hollowed model may still change a bit

because of the numerical errors introduced in remeshing dur-

ing surface advancing. We solve this problem by explicitly

compensating such errors (similar to post-stabilization [41]).

Let G0 be the gravity of the hollowed object at the beginning

of an iteration, we require the change of gravity equals the

difference between B and G0

dI(ρs;Ω)gΔt = B −G0, (30)

which finally turns to

dI(ρs;Ω) = ρs

∫
Γ

vn(x)dΓ =
B −G0

gΔt
. (31)

An example of the result after the second step is shown in

Fig. 4(d).

Step 3 Aligning the center of mass with the center of buoy-

ancy is not sufficient to ensure the stability of floating object

by itself. The concept relating to the stability of a floating ob-

ject is so-called metacenter, which is a point directly above

the center of buoyancy.1) A floating object is stable if its cen-

ter of mass is below the metacentre (but the center of mass

can be above the center of buoyancy). Note that only for very

simple geometries, an analytic representation about the meta-

center exists. Therefore, as the third step, we choose to lower

the center of mass as much as possible. It largely increases

the chance the object floats stably in the water.

The objective function of Step 3 is the z component of the

center of mass

Jstable = cz. (32)

Similar to Step 2, we need to preserve the results of previous

steps. In addition to the thickness constraint Eq. (22) and the

gravity constraint Eq. (31), we add two more constraints.

dcx =
bx − c0

x

Δt
and dcy =

by − c0
y

Δt
. (33)

Again we compensate the numerical error here, and c0
x and

c0
y are the x and y components of the center of mass at the

beginning of the iteration. An example of the final result after

Step 3 is shown in Fig. 4(e).

4.3 Design of spinnable objects

The computational design of spinnable objects has been in-

vestigated recently [2]. Their method optimizes the interior

shape to adjust an object’s rotational dynamics property us-

ing an adaptive voxel grid. Our algorithm can also be used to

design spinnable objects such as spinning tops, while result-

ing in a smooth interior shape.

1) The exact position of metacentre is determined by the outer shape and immersion height of the object, and changes with the angle of heel of the object
from the original orientation. In an equilibrium situation where the center of mass is aligned vertically with the center of buoyancy, the metacentre is directly
above the center of buoyancy by a distance d = I

V where I is the moment of inertia of the plane of floatation with respect to a horizontal axis and V is the
immersion volume. Only for very simple geometries, d can be expressed as an analytic function of the angle of heel. For more details, please refer to Mégel
and Kliava [42]

Yue XIE et al. Continuous optimization of interior carving in 3D fabrication 339

Fig. 5 The workflow of spinning application (The blue point is the ground contact point and is set as the origin of the world coordinate system.
J is the spinnability energy computed by using Eq. (38)). (a) Input; (b) initial interior shape; (c) after aligning COM; (d) after aligning principal
axes; (e) after minmizing spinnablity; (f) print

The input is a triangle mesh representing the outer surface

of an object with its lowest point as the ground contact point,

as shown in Fig. 5(a). The origin of the world coordinate sys-

tem is located at the ground contact point, and the z-axis is ex-

pected to be the rotating axis. The rotational dynamics prop-

erty of a rigid object is described by its inertia tensor

I =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sy2 + sz2 − sz
2

s1
−sxy −sxz

−sxy sx2 + sz2 − sz
2

s1
−syz

−sxz −syz sx2 + sy2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (34)

Similar to the floating application, we divide the optimiza-

tion into three steps. In each step, we formulate the same ob-

jective function as proposed by Bächer et al. [2], but use a

surface discretization instead.

Step 1 To make a model spinnable, we first align the center

of mass with the rotating axis, which means vanishing the x

and y components of the center of mass. Thus the objective

function of the first step is

Jcom =
1
2

(cx)2 +
1
2

(cy)2. (35)

Only the thickness constraint Eq. (22) needs to be satisfied

here. A result of this step can be seen in Fig. 5(c).

Step 2 We then align the maximal principal axis with the

rotating axis

Jaxis =
1
2

(
sxz

sx2 + sy2
)2 +

1
2

(
syz

sx2 + sy2
)2. (36)

Meanwhile we use constraints to preserve the aligned center

of mass

dcx = − c0
x

Δt
and dcy = −

c0
y

Δt
. (37)

As mentioned above, we use c0
x and c0

y instead of 0 on the

right hand side to compensate the numerical errors. Figure

5(d) shows a result after this step.

Step 3 After both the center of mass and the maximal prin-

cipal axis are aligned, we minimize the spinnability energy of

the object

Jspin =
1
2

(
Ia

Ic
)2 +

1
2

(
Ib

Ic
)2, (38)

where Ia, Ib and Ic are the three principal moments of inertia.

As the maximal principal axis has already been aligned with

the rotating axis, Ic = sx2 + sy2 . Ia and Ib are the two eigenval-

ues of the top-left 2× 2 sub-matrix of I and can be computed

analytically as

Ia, Ib =
T
2
± (

T 2

4
− D)1/2, (39)

where

T = sxx + syy + 2szz − 2
sz

2

s1
,

D = (sxx + szz − sz
2

s1
)(syy + szz − sz

2

s1
) − sxy

2.

(40)

The Eulerian semiderivative of Eq. (38) is derived in Ap-

pendix B. In addition to the thickness constraint Eq. (22) and

the center of mass preserving constraint Eq. (37), we add two

more constraints to preserve the aligned maximal principle

axis

d(
sxz

sx2 + sy2
) = − s0

xz

s0
x2 + s0

y2

/Δt, (41)

d(
syz

sx2 + sy2
) = − s0

yz

s0
x2 + s0

y2

/Δt, (42)

where s0
α is the value of sα at the beginning of the iteration.

A result after all three steps is shown in Fig. 5(e).

4.4 Design of statically balanced objects

We also apply our algorithm to the static object balancing

problem. This application is previously addressed by Prévost

et al. [1]. Their method adopts the voxelization representation

and adjusts the center of mass in a heuristic way.

As shown in Fig. 6(a), we generate a convex hull from the

ground contact points of the input object and set the center

340 Front. Comput. Sci., 2017, 11(2): 332–346

Fig. 6 The workflow of static balancing application (The green zone is the convex hull generated from the ground contact points of the object.
The blue point is the center of the convex hull, and is set as the target point and the origin of the world coordinate system). (a) Input; (b) initial
interior shape; (c) after aligning COM; (d) after lowering down COM; (e) print

of the convex hull as the target point p. The optimization is

divided into two steps.

Step 1 To enable an object to stand on the ground plane, we

first move the projection of the center of mass on the ground

toward the target point p

Jalign =
1
2

(cx − px)2 +
1
2

(cy − py)2. (43)

Only the thickness constraint Eq. (22) needs to be satisfied

here. A result of this step can be seen in Fig. 6(c).

Step 2 To make the object stand as stably as possible, we

lower down the center of mass

Jstable = cz, (44)

while preserving the x and y components of the center of mass

as

dcx =
px − c0

x

Δt
and dcy =

py − c0
y

Δt
. (45)

An example of the result can be seen in Fig. 6(d).

Prévost et al. [1] generously made their 3D models pub-

licly available, allowing us to repeat their examples using

our method. Thanks to the continuous representation of the

carved shape and its deformation, we find that our carving

method is more effective. For the example shown in Fig. 5, as

reported in their paper, their discretized carving method can-

not completely balance the object. In contrast, our method

successfully finds interior carving to achieve static balance

(see Fig. 6(e) and the video).

5 Results

We implemented our algorithm on a desktop PC equipping

an Intel i7-4770 3.4 Ghz CPU and 16GB RAM. All compu-

tations are executed in a single thread. All our models have

size 10–20 cm. We set the density of the printing material as

1 200 kg/m3 and the density of the fluid as 1 000 kg/m3 (wa-

ter). For “fish”, “elephant” and “ellipsoid”, we use 1.0 mm

as the minimal printing thickness; for others we use 1.5 mm.

The termination threshold ε in Algorithm 1 is set as 1e–5.

All the experimental results are printed by a low-cost FDM

3D printer using PLA materials. To facilitate the removing of

the supporting structures inside the models, we manually cut

the mesh into individual pieces and glue the printed pieces to-

gether. For the floatation application, we smear Vaseline over

the cracks between the pieces to make the model watertight.

Compared with the self-weight of the models, the mass influ-

ence of the glue and Vaseline is negligible.

Floating objects design Figures 1(c) and 4(f) show a result

of the floatation application, a bear on an iceberg. Our method

hollows the interior of the model to decrease its volume from

313 853.3 mm3 to 82 163.5 mm3, while the target volume is

82 161.9 mm3 which is determined by the buoyancy force and

printing material density. The center of mass is adjusted from

(8.071, –1.868, 25.766) to (0.002, 0.001, 20.546) (in unit of

millimeter, mm, and the origin of the world coordinate sys-

tem is put at the center of buoyancy). From these numbers,

we can see that the constraints of the volume and the center

of mass are both accurately satisfied. As shown in the figures,

the immersion height and the pose of the printed model in the

water closely match the design.

Figures 7 and 8 show another two examples of the floata-

tion application. Both models have large parts above the

Fig. 7 Floating object design: fish

Yue XIE et al. Continuous optimization of interior carving in 3D fabrication 341

Fig. 8 Floating object design: motorboat

water-level and cannot float with the specified immersion

height and pose before optimization. Our method accurately

adjusts their volumes and center of mass such that the op-

timized results can float stably in water with the designed

poses.

For all the three models, our optimizer converges in 1–2

minutes. The detailed performances are shown in Table 1.

The three size columns are respectively the sizes of the input

triangle mesh, the initial interior boundary mesh and the in-

terior boundary mesh after optimization. In the performance

columns, the time in the column Init includes computing the

buoyancy force and building the Kd-tree for thickness con-

straints. The following four columns are the performances of

the four steps in the optimization: shrinking the outer surface

to obtain initial interior shape, adjusting volume to balancing

gravity and buoyancy force, aligning the center of mass and

lowering down the center of mass respectively. The last col-

umn is the percentage of time costed in surface tracking. The

convergence curve of the bear model is shown in Fig. 9. From

the table and the curve, we can see that the last optimization

step needs more iterations than the previous two steps and

thus costs most of the computing time. The reason is that the

last step has more constraints than previous two steps, and

the interior boundary advances more elaborately.

Spinnable objects design Figure 5(f) shows an elephant-

shaped spinning top. Before optimization, the center of mass

of the input model is not directly above the contact point

and the maximal principal axis is misaligned with the rotat-

ing axis (z axis). Our algorithm generates a multi-void inte-

rior shape to align the center of mass and the maximal prin-

cipal axis exactly, and maximizes its spinnability. Twisted

by fingers, the printed model keeps spinning for a while,

as recorded in the accompanied video. The whole compu-

tation is completed in less than 1 minute. Table 2 shows the

detailed performance. The time in the column Init includes

building the Kd-tree for thickness constraints. The follow-

ing four columns are the performances of the four steps in

the optimization: shrinking outer surface to obtain the initial

interior shape, aligning the center of mass, aligning the prin-

cipal axes and minimizing the spin energy respectively. The

convergence curve of the optimization is shown in Fig. 10.

Fig. 9 The convergence curve of the bear model (The abscissa is the com-
puting time. The ordinate is the height of the center of mass above the center
of the buoyancy (Eq. (32)). The end of each step is marked as a red point on
the curve. The first three steps (dotted) shrink the outer surface to obtain the
initial interior boundary and advance it to satisfy the constraints, and the last
step (solid) minimizes the height of the center of mass.)

Figure 11 shows the controllability we have on the smooth-

ness of the interior shape’s boundary. The result in Fig.

11(a) is computed without the smoothness term. The interior

boundary has sharp edges but the smallest spin energy. In Fig.

11(b) we add the smoothness term Eq. (24) to the objective

function Eq. (38) with a small weight, 1e–7. The sharp edges

of the interior boundary are smoothed while the overall shape

is preserved, and the spin energy is almost unaffected. In Fig.

11(c) we use a weight 5 times larger. The shape of the inte-

rior boundary becomes even smoother while the spin energy

slightly increases. Adjusting the weight of the smoothness en-

ergy term provides us with a way to balance the smoothness

Table 1 Performance of the floatation application

Size (# vertex / # triangles) Performance (# iteration / time (seconds))
Model

Input mesh Initial surf Result surf Init Shrink Gravity Align COM Lower COM Total Surf/%

Bear 3 993/7 990 5 217/10 438 4 076/8 156 5.2 6/3.3 8/6.3 16/11.4 50/29.5 55.8 60.6

Fish 7 500/15 000 7 710/15 420 5 851/11 690 7.2 4/4.0 6/10.4 20/27.7 29/35.1 84.3 46.0

Motorboat 7 496/15 000 8 141/16 290 6 673/13 324 4.4 6/6.2 7/12.9 6/11.7 44/62.8 97.0 43.3

342 Front. Comput. Sci., 2017, 11(2): 332–346

Table 2 Performance of the spinning application

Size (# vertex/# triangles) Performance (# iteration/time (seconds))
Model

Input mesh Begin surf End surf Init Shrink Align COM Align axis Spinability Total Surf/%

Elephant 4 416/8 840 5 517/11 042 3 126/6 240 2.2 4/2.7 8/8.0 7/6.7 42/30.2 49.9 46.9

Teapot 734/1 468 3 900/7 800 2 879/5 750 2.5 6/2.4 5/2.6 3/1.5 83/29.3 38.4 65.8

Ellipsoid 2 526/5 048 2 623/5 242 2 402/4 800 1.2 4/1.0 5/2.6 6/3.0 85/37.7 45.4 46.2

Fig. 10 Convergence curve of the elephant model (The abscissa is the com-
puting time. The ordinate is the spin energy (Eq. (38)). The end of each step
is marked as a red point on the curve. The first three steps (dotted) shrink the
outer surface to obtain the initial interior boundary and advance it to satisfy
the constraints, and the last step (solid) minimizes the spin energy.)

of the interior shape against the spinnability of the result. This

comparison demonstrates the controllability of our method

on the surface properties of the interior boundary, which is

absent in voxelization-based methods [1,2].

Statically balanced objects design Figure 6(e) and Fig.

12 show two results of the static balancing application. Both

models fall on the ground before optimization and stand sta-

bly after the interior shapes computed by our method are hol-

lowed. For the dinosaur model, the center of mass is first

aligned vertically to the target point with an error smaller

than 0.001 mm and then moved as low as possible. For the

spheres model, the center of mass cannot be adjusted to a

position directly above the target point because of the mini-

mal wall thickness requirement. Our algorithm thus moves it

as close as possible to the target point horizontally. The sec-

ond optimization step stops after only six iterations as there

is no more deformation room for the interior shape to lower

down the center of mass. The performance of both results is

reported in Table 3. Compared with the results of previous

applications, the numbers of iterations to align the center of

mass are much larger. In these two models, the initial centers

of mass are much farther from the target points, and hence

the interior shapes need to change more to adjust the cen-

ter of mass. Please see the video for a complete optimization

process.

Comparison with spin-it We compare our method with

the hollowing part of the spin-it method [2] which adopts

voxelization as the discretization method and is regarded as

the state-of-the-art. The nonlinear optimization problem of

spin-it method is solved with Knitro [43] library by using

the SLQP algorithm. All calculations are executed in single

thread. We run spin-it method many times to experiment dif-

ferent maximal refinement levels, starting from level 7 as the

initial refinement level. The iterating is terminated when there

are no voxels can be further split or the relative change of the

energy is less than the same convergence threshold (ε =1e–5)

used in our method.

Figure 13 compares the results of spin-it and our method

on the Ellipsoid model of the spinning application. From the

figure we can see that the interior voids of the two results have

similar overall shapes. But the smooth surface of our result

closely matches the outer surface and generates walls as thin

as the minimal wall thickness, while the result of spin-it can

only approximate the outer surface with small voxels. Table

4 compares the performances of two methods. The max level

column is the maximal boundary/interior refinement level.

Fig. 11 Comparison of different smoothness energy term weights (w is the weight of the smoothness energy term. J is the spinnability energy
in Eq. (38).). (a) w = 0.0; (b) w =le–7; (c) w =5e–7; (d) print

Yue XIE et al. Continuous optimization of interior carving in 3D fabrication 343

Fig. 12 Statically balanced object design: spheres

Fig. 13 Comparison of result meshes with spin-it [2] (The left two pictures
are the optimized interior shapes of our method and spin-it. The right picture
is the photo of the real objects printed with the two results.)

The #Voxel is the number of voxels in the octree. The #DOF

column is the number of DOF before/after optimization. The

spin energy is computed as Eq. (38). From the table we can

see that although spin-it can obtain results faster using coarse

refinements, to obtain a result comparable to ours it needs

an impractical high refinement level. As in the third row, to

obtain the spinning energy 0.517, we must set its maximal re-

finement level to 11/10, but the optimizer fails to return a so-

lution in a few minutes during the third iteration because 339

686 DOFs have been generated. And the time cost of tree-

building plus the first two iterations have already exceeded 90

seconds. In contrast, our method gets a spinning energy 0.514

using only 2 402 DOFs in 46 seconds. High refinement level

also leads to voxels of prohibitive small size, e.g., 0.230 mm

for a 10-level voxel and 0.115 mm for a 11-level voxel, which

could not be fabricated properly by low-cost FDM printers.

We also compare spin-it method with our method on the

bear model for the floatation application and on the dinosaur

model for the statically balancing application, as summarized

in Tables 5 and 6. Again, from these results we can see that

to obtain a result with comparable accuracy, spin-it method

must use a very high refinement level which leads to long

computing time and excessively small voxels. For the bear

model, spin-it method even fails to generate a result satisfy-

ing all constraints when a relatively coarse refinement level is

used (first two rows). For the dinosaur model, with a coarse

refinement level (the first three rows) spin-it method stops

the optimization after the first iteration as all voxels are either

fully filled or hollowed and thus no new voxels are split. And

even refining the octree to level 12 which leads to 9.5 million

voxels and 0.088 mm voxel size, spin-it method still cannot

adjust the center of mass directly above the target point. Our

method not only adjusts the center of mass directly above the

target point but also lowers it down to make the model stand

more stably, using much less DOFs.

Discussion and limitations The result of our method is af-

fected by the initial shape of the interior voids. In our ex-

periments we find that shrinking the outer surface is a good

choice to obtain the initial interior void, especially for models

in the floatation application where most interior volumes of

the objects need to be hollowed.

As shown in the performance tables, the computation time

spent on each iteration is related to the mesh resolution of the

interior boundary surface (note that half the time is spent on

surface tracking). The number of iterations needed for con-

vergence varies from model to model, but in general we find

that it depends on to what extent the interior void needs to

change its shape. The larger and more complex the change is,

the more iterations are needed.

Due to the printing accuracy, the density of the printed ob-

Table 3 Performance of the static balancing application

Size (# vertex / # triangle) Performance (# iteration / time (seconds))
Model

Input mesh Initial surf Result surf Init Shrink Align COM Lower down COM Total Surf/%

Dinosaur 5 047/10 090 6 629/13 254 3 618/7 228 2.7 6/4.8 64/54.0 110/73.7 135.2 47.9

Spheres 1 441/2 878 6 242/12 480 4 822/9 640 1.7 6/3.9 136/93.0 6/4.7 103.3 70.5

Table 4 Comparison with spin-it [2] on the Ellipsoid model for the spinning application

Max level # Voxel # DOF Spin energy Build tree time/s Optimization time/s

9/8 180 720 15 141/22 895 0.549 4.4 4.4

Spin-it 10/9 695 080 15 830/77 204 0.527 18.1 12.4

11/10 2 749 489 16 147/>339 686 0.517 72.6 >21.6

Our - - 2 526/2 402 0.514 - 45.4

Note: In the third row of spin-it method, “>” means “larger than” as too many DOFs are generated as the result of node splitting thus we have to stop the
optimization after 2 iterations

344 Front. Comput. Sci., 2017, 11(2): 332–346

Table 5 Comparison with spin-it [2] on the bear model for the flotation application

Max level # Voxel # DOF COM height/mm Build tree time/s Optimization time/s

9/8 232 478 13 354/- n/a 6.1s n/a

10/9 915 279 14 163/- n/a 25.8s n/a
Spin-it

11/10 3 651 754 14 602/63 033 23.037 100.7s 48.4s

12/11 14 609 204 14 826/29 062 21.156 408.8s 24.0s

Our - - 3 993/4 076 20.546 - 55.8s

Note: In the 1st two rows, the non-linear solver of spin-it method failed to find a feasible solution satisfying the COM constraints and gravity constraints
simultaneously

Table 6 Comparison with spin-it [2] on the dinosaur model for the statically balancing application

Max level # Voxel # DOF COM distance/mm COM height/mm Build tree time/s Optimization time/s

9/8 148 317 6 198/6 198 3.210 60.738 4.0 0.4

10/9 591 998 6 750/6 750 1.613 59.638 17.5 1.2
Spin-it

11/10 2 379 245 7 112/7 112 0.656 59.402 72.1 2.5

12/11 9 582 504 7 282/>75 645 0.133 59.077 286.0 >699.9

Our - - 5 047/3 618 0.0 56.170 - 135.2

Note: In the 4th row of spin-it method, “>” means “larger than” as spin-it method does not converge after more than 10 minutes so we stop the optimization

ject varies a bit from the density of the printing material. In

our floatation application, such density difference could lead

to different immersion height, buoyancy force and center of

buoyancy position, which finally makes the printed object

float in a pose slightly different from the design.

For the floatation application, although our optimization

largely increases the floatation possibilities and works well

in practice for all our models, it cannot fully guarantee the

stability of the optimized result. This is due to a fact that the

exact position of the metacentre changes with the orientation

of the model in the fluid and is hard to calculate. Incorporat-

ing a good approximation for metacenter computation could

be an interesting direction to explore.

6 Conclusion

In this paper, we propose a general optimization algorithm for

interior carving in 3D fabrication. Unlike previous methods,

we use an explicit triangular mesh to represent the carving

boundary of the interior voids. We use Eulerian semideriva-

tive to relate the time derivative of the objective function to

a virtual velocity field. In each iteration of the optimization,

we solve a linear programming problem to find the velocity

field that decreases the objective function fastest, and then

advance the boundary surface in this velocity field using sur-

face tracking. We apply the general optimization algorithm

to a novel application for floating object design and two other

perviously investigated applications. To verify the effective-

ness of our algorithm, we 3D print the optimized objects and

compare them with the digital designs.

Acknowledgements We would like to thank the reviewers for their con-
structive comments. Xiang Chen is partially supported by NSFC (Grant No.
61303136) and the Fundamental Research Funds for the Central Universi-
ties. Kun Zhou is partially supported by NSFC (Grant No. 61272305) and
National Program for Special Support of Eminent Professionals of China.

Appendixes

Appendix A Gradient descent direction of v(x)

Here we consider a normalized velocity field vn(x) such that∫
Γ0

vn(x)2dΓ = 1. (46)

We seek a velocity vn(x),∀x ∈ Γ0 under this constraint to minimize
the Eulerian derivative value Eq. (12) of the objective function. Par-
ticularly, we solve the constrained optimization problem,

min
vn

∫
Γ0

P(x)vn(x)dΓ, s.t. the unit constraint Eq. (46).

In this case, the optimal velocity vn(x) can be solved explicitly using
the method of Lagrange multipliers and the Euler-Lagrange equa-
tion. The resulting optimal vn(x) is indeed proportional to −P(x),

vn(x) = − 1

(
∫
Γ0

P(x)2dΓ)
1
2

P(x). (47)

Appendix B Eulerian semiderivatives

Common terms One term we frequently use in all applications is

s f = I(ρs f ;V) − I(ρs f ;Ω), (48)

whose Eulerian semiderivative is

ds f = −dI(ρs f ;Ω) = −
∫
Γ

f (x)vn(x)dΓ. (49)

The component of the center of mass are also frequently used

cα =
sα
s1
, where α = x, y, z, (50)

Yue XIE et al. Continuous optimization of interior carving in 3D fabrication 345

whose Eulerian semiderivatives can be computed using the chain
rule

dcα =
dsαs1 − ds1 sα

s1
2

. (51)

With these basic terms, the Eulerian semiderivatives of most ob-
jective functions and constraints formulated in Section 4 can be de-
rived using the chain rule in a straightforward manner. The only non-
trivial one is Eq. (38), whose Eulerian derivative is derived below.

Eulerian semiderivative of Eq. (38) Applying the chain rule to
Eq. (38), we obtain

dJspin =
Ia

I2
c

dIa +
Ib

I2
c

dIb −
I2

a + I2
b

I3
c

dIc. (52)

Then, by applying the chain rule to Eq. (39) and Eq. (40), the dIa

and dIb can be computed as

dIa, dIb = (
1
2
± T

4
(
T 2

4
− D)−

1
2)dT ∓ 1

2
(
T 2

4
− D)−

1
2 dD, (53)

where

dT = dsxx + dsyy + 2dszz − 4szdsz s1 − 2s2
z ds1

s2
1

, (54)

and

dD = (dsxx + dszz − 2szdszsv − s2
z dsv

s2
v

)(syy + szz − s2
z

sv
)

+(dsyy + dszz − 2szdszsv − s2
z dsv

s2
v

)(sxx + szz − s2
z

sv
)

−2sxydsxy.

(55)

Finally the dIc can be derived by applying the chain rule again

dIc = dsx2 + dsy2 . (56)

References

1. Prévost R, Whiting E, Lefebvre S, Sorkine-Hornung O. Make it stand:

balancing shapes for 3D fabrication. ACM Transactions on Graphics,

2013, 32(4): 81

2. Bächer M, Whiting E, Bickel B, Sorkine-Hornung O. Spin-it: opti-

mizing moment of inertia for spinnable objects. ACM Transactions

on Graphics, 2014, 33(4): 96

3. Christiansen A N, Schmidt R, Bærentzen J A. Automatic balancing

of 3D models. Computer-Aided Design, 2015, 58: 236–241

4. Chen S, Torterelli D. Three-dimensional shape optimization with vari-

ational geometry. Structural Optimization, 1997, 13(2): 81–94

5. Braibant V, Fleury C. Shape optimal design using B-splines. Com-

puter Methods in Applied Mechanics and Engineering, 1984, 44(3):

247–267

6. Xu D, Ananthasuresh G K. Freeform skeletal shape optimization of

compliant mechanisms. Journal of Mechanical Design, 2003, 125(2):

253–261

7. Bendsoe M P. Optimal shape design as a material distribution prob-

lem. Structural Optimization, 1989, 1(4): 193–202

8. Wang M Y, Wang X M, Guo D M. A level set method for structural

topology optimization. Computer Methods in Applied Mechanics and

Engineering, 2003, 192(1): 227–246

9. Zhou M, Pagaldipti N, Thomas H, Shyy Y. An integrated approach to

topology, sizing, and shape optimization. Structural and Multidisci-

plinary Optimization, 2004, 26(5): 308–317

10. Haftka R T, Grandhi R V. Structural shape optimizationa——a survey.

Computer Methods in Applied Mechanics and Engineering, 1986,

57(1): 91–106

11. Saitou K, Izui K, Nishiwaki S, Papalambros P. A survey of structural

optimization in mechanical product development. Journal of Comput-

ing and Information Science in Engineering, 2005, 5(3): 214–226

12. Luo L, Baran I, Rusinkiewicz S, Matusik W. Chopper: partition-

ing models into 3D-printable parts. ACM Transactions on Graphics,

2012, 31(6)

13. Attene M. Shapes in a box: disassembling 3D objects for efficient

packing and fabrication. Computer Graphics Forum, 2015

14. Zhou Y B, Sueda S, Matusik W, Shamir A. Boxelization: folding 3D

objects into boxes. ACM Transactions on Graphics, 2014, 33(4): 71

15. Bickel B, Kaufmann P, Skouras M, Thomaszewski B, Bradley D,

Beeler T, Jackson P, Marschner S, Matusik W, Gross M. Physical face

cloning. ACM Transactions on Graphics, 2012, 31(4): 118

16. Skouras M, Thomaszewski B, Coros S, Bickel B, Gross M. Compu-

tational design of actuated deformable characters. ACM Transactions

on Graphics, 2013, 32(4): 82

17. Chen X, Zheng C, Xu W, Zhou K. An asymptotic numerical method

for inverse elastic shape design. ACM Transactions on Graphics,

2014, 33(4): 95

18. Bächer M, Bickel B, James D L, Pfister H. Fabricating articulated

characters from skinned meshes. ACM Transactions on Graphics,

2012, 31(4): 47

19. Calì J, Calian D A, Amati C, Kleinberger R, Steed A, Kautz J,Weyrich

T. 3D-printing of non-assembly, articulated models. ACM Transac-

tions on Graphics, 2012, 31(6): 130

20. Zhu L, Xu W, Snyder J, Liu Y, Wang G, Guo B. Motion-guided me-

chanical toy modeling. ACM Transactions on Graphics, 2012, 31(6):

127

21. Coros S, Thomaszewski B, Noris G, Sueda S, Forberg M, Sumner R

W, Matusik W, Bickel B. Computational design of mechanical char-

acters. ACM Transactions on Graphics, 2013, 32(4): 83

22. Umetani N, Igarashi T, Mitra N J. Guided exploration of physically

valid shapes for furniture design. ACM Transactions on Graphics,

2012, 31(4): 86

23. Vouga E, Höbinger M, Wallner J, Pottmann H. Design of self-

supporting surfaces. ACM Transactions on Graphics, 2012, 31(4): 87

24. Panozzo D, Block P, Sorkine-Hornung O. Designing unreinforced

masonry models. ACM Transactions on Graphics, 2013, 32(4): 91

25. De Goes F, Alliez P, Owhadi H, Desbrun M. On the equilibrium of

simplicial masonry structures. ACM Transactions on Graphics, 2013,

32(4): 93

26. Wang W, Wang T Y, Yang Z, Liu L, Tong X, Tong W, Deng J, Chen

F, Liu X. Cost-effective printing of 3D objects with skin-frame struc-

tures. ACM Transactions on Graphics, 2013, 32(6): 177

27. Lu L, Sharf A, Zhao H,Wei Y, Fan Q, Chen X, Savoye Y, Tu C, Cohen-

346 Front. Comput. Sci., 2017, 11(2): 332–346

Or D, Chen B. Build-to-last: strength to weight 3D printed objects.

ACM Transactions on Graphics, 2014, 33(4): 97

28. Stava O, Vanek J, Benes B, Carr N, Měch R. Stress relief: improv-

ing structural strength of 3D printable objects. ACM Transactions on

Graphics, 2012, 31(4): 48

29. Zhou Q, Panetta J, Zorin D. Worst-case structural analysis. ACM

Transactions on Graphics, 2013, 32(4): 137

30. Xie Y, Xu W, Yang Y, Guo X, Zhou K. Agile structural analysis for

fabrication-aware shape editing. Computer Aided Geometric Design,

2015, 35: 163–179

31. Musialski P, Auzinger T, Birsak M, Wimmer M, Kobbelt L. Reduced-

order shape optimization using offset surfaces. ACM Transactions on

Graphics, 2015, 34(4): 102

32. Delfour M C, Zolésio J P. Shapes and Geometries: Metrics, Analysis,

Differential Calculus, and Optimization. Philadelphia: Siam, 2011

33. Brakke K A. The surface evolver. Experimental Mathematics, 1992,

1(2): 141–165

34. Sethian J A. Level set methods and fast marching methods. Journal of

Computing and Information Technology, 2003, 11(1): 1–2

35. Nesterov Y, Nemirovskii A. Interior-Point Polynomial Algorithms in

Convex Programming. Philadelphia: Siam, 1994

36. Makhorin A, Andrew O. GLPK (GNU linear programming kit). 2008

37. Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces.

Surfaces, 2002, 44

38. Brochu T, Bridson R. Robust topological operations for dynamic ex-

plicit surfaces. SIAM Journal on Scientific Computing, 2009, 31(4):

2472–2493

39. Sorkine O, Cohen-Or D. Least-squares meshes. In: Proceedings of

Shape Modeling Applications. 2004

40. McGrail S. Boats of the World: from the Stone Age to Medieval

Times. New York: Oxford University Press, 2004

41. Ascher U M, Chin H, Reich S. Stabilization of DAEs and invariant

manifolds. Numerische Mathematik, 1994, 67(2): 131–149

42. Mégel J, Kliava J. Metacenter and ship stability. American Journal of

Physics, 2010, 78(7): 738–747

43. Byrd R H, Nocedal J, Waltz R A. Knitro: an integrated package for

nonlinear optimization. In: Di Pillo G, Roma M, eds. Large-Scale

Nonlinear Optimization, Vol 83. Springer, 2006, 35–59

Yue Xie received his BS in computer sci-

ence from Jiangnan University, China in

2008. He is currently a PhD student in com-

puter science at Zhejiang university, China.

His research focuses on computer-aided de-

sign.

Ye Yuan received his BS in computer sci-

ence from Zhejiang University, China in

2015. From September 2015, He became

a master student in computer science at

Carnegie Mellon University, USA. His re-

search interests include physically based

simulation, rendering and animation.

Xiang Chen received his PhD in computer

science from Zhejiang University (ZJU),

China in 2012. He is currently an as-

sistant professor in the College of Com-

puter Science and Technology, ZJU. His

research interests include fabrication-aware

design, image analysis/editing, shape mod-

eling/retrieval and computer-aided design.

Changxi Zheng received his PhD in com-

puter science from Cornell University,

USA in 2012. He is currently an assistant

professor in Computer Science Department

in Columbia University, USA. His research

interests include computer graphics, scien-

tific computing and robotics.

Kun Zhou is a Cheung Kong Professor in

the Computer Science Department of Zhe-

jiang University (ZJU), China, and the di-

rector of the State Key Lab of CAD&CG,

China. Prior to joining ZJU in 2008, he was

a leader researcher of the Internet Graphics

Group at Microsoft Research Asia, China.

He received his BS degree and PhD degree

in computer science from ZJU in 1997 and 2002, respectively. His

research interests are in visual computing, parallel computing, hu-

man computer interaction, and virtual reality. He currently serves on

the editorial/advisory boards of ACM Transactions on Graphics and

IEEE Spectrum. He is a fellow of IEEE.

