
Support-Free Interior Carving for 3D Printing

Abstract

Recent interior carving methods for functional design necessitate
a cumbersome cut-and-glue process in fabrication. We propose a
method to generate interior voids which not only satisfy the func-
tional purposes but are also support-free during 3D printing. We
design a support-free unit structure for voxelization and derive the
wall thicknesses parameterization for continuous optimization. We
also design a discrete dithering algorithm to ensure the printability
of ghost voxels. The interior voids are iteratively carved by al-
ternating the optimization and dithering. We apply our method to
optimize the static and rotational stability, and print various results
to evaluate the efficacy.

1 Introduction

Interior shape carving is a modeling operation to hollow voids in-
side an object without affecting its exterior appearance. In real-
world fabrication, the operation is essential for modifying physical
properties, such as weight, center of mass and moment of inertia,
of an object to achieve its functional purposes. Despite its useful-
ness, manual hollowing is a tedious trial-and-error process even for
a simple task. To overcome such difficulties, recent work has in-
vestigated several computational methods to hollow digital models
automatically. By using these methods and increasingly popular 3D
printers, a personal user can handily design and fabricate functional
objects that stand on ground [Prévost et al. 2013; Christiansen et al.
2015], spin around an axis [Bächer et al. 2014], float in fluid [Wang
and Whiting 2016] and withstand under load [Lu et al. 2014].

The mainstream 3D printing technologies, such as fused deposition
modeling (FDM) and stereolithography (SLA), deposit materials
layer-by-layer to build a tangible product. During printing, addi-
tional supporting structures are often necessary to avoid the falling
of overhanging parts, e.g. to support the ceilings of interior voids.
The supporting structures affect the computed physical properties
thus must be removed from the printed object. However, this pro-
cess usually leaves visually unpleasant cracks on the object sur-
face [Zhang et al. 2015b; Wang et al. 2016]. What is even worse is
that supporting materials inside interior voids of the object cannot
be directly taken out. Previous work tackles this issue by first cut-
ting the model into individual parts to print and then gluing printed
pieces back together, which is a cumbersome process.

Thanks to the properties of plastic materials like ABS and PLA, an
FDM printer can build slanted walls without using support mate-
rials. Inspired by this observation, we realize that it is possible to
make the interior voids support-free, by constraining the structures
and boundary slopes (Figure 1). An object with such interior voids

(a) Printing (b) Interior voids (c) Result

Figure 1: Support-free interior carving. (a) A close-up of the
HORSE during printing, without any supporting structures inside
it. (b) A sectional view of the support-free interior voids. (c) The
HORSE printed as a whole can stand stably.

can be printed as a whole, eliminating the needs of any supporting
structures and shape decompositions.

In this paper, we propose a novel method to automatically generate
support-free interior voids while satisfying user-specified functions.
We design a voxel structure that is self-supportable during printing
and use it as the basic construction unit of interior voids. Taking
a step further, we incorporate the support-free voxel structure into
an interior carving optimization framework to achieve functional
design. Specifically, we use wall thickness to parameterize the inte-
gral terms over each voxel and use them to formulate the objective
function of the optimization problem. To deal with the ghost vox-
els generated in the optimization, we develop an efficient dithering
algorithm that ensures printability and preserves support-free prop-
erty. The interior voids are iteratively carved by alternating between
an application specific nonlinear programming and the ghost vox-
els dithering. We apply the method to design statically balanced
objects and spinnable objects, and print all the results without us-
ing any support materials inside the objects.

2 Related Work

The 3D printing technology provides a convenient way for fabri-
cating objects with complex geometries, and thus draws a lot of
attention in the computer graphics community. One line of this
research optimizes different sub-steps of the 3D printing process,
such as printing direction [Gao et al. 2015; Zhang et al. 2015b],
slicing [Wang et al. 2015], decomposition and packing [Chen et al.
2015; Yao et al. 2015; Luo et al. 2012]. The other line of this re-
search detects and fixes structural problems of the 3D printed model
itself, such as stress analysis [Stava et al. 2012; Zhou et al. 2013;
Umetani and Schmidt 2013] and cost-effective printing [Wang et al.
2013; Lu et al. 2014; Zhang et al. 2015a].

Generating economic and practical supporting structures is a hot
topic in 3D printing technologies. Vanek et al. [2014] proposed a
method to generate tree-like supporting structure to reduce mate-
rial costs. Dumas et al. [2014] used scaffolding-like structures to
improve the printability of overhanging parts. Hu et al. [2014] de-
signed a method to largely reduce the necessary supporting struc-
tures by cutting the whole object into pyramidal parts. Recently,
Reiner and Lefebvre [2016] proposed an interactive sculpting sys-
tem for designing support-free models. All the above methods op-
timize supporting structures outside the object, which are relatively
easy to remove after printing. In contrast, our method focuses on

α

l interior void

wall thickness t

(a) Support-free voxel (b) Voxelization (c) Optimization + Dithering (d) Result (e) Interior voids

Figure 2: Support-free voxelization. (a) The support-free voxel. (b) The initial voxelization of the ELEPHANT using the support-free voxel
as basic unit. (c) The sectional view of interior voids generated by wall thicknesses optimization and ghost voxels dithering. (d) The printing
result without using support materials inside it. (e) Highlight of the interior voids. The blue point is the ground-contact point, and the
transparent / solid arrows are principal axes of the input / result.

the elimination of supporting structures inside the object, which are
impossible to remove without breaking the object into pieces.

Our work is related to the interior carving methods for 3D printable
objects. Prévost et al. [2013] generated statically balanced objects
by voxelizing and hollowing the input model in a heuristic man-
ner. Bächer et al. [2014] designed spinnable models by using an
adaptive octree for volume voxlization and solving an optimization
problem for the hollowing state of each voxel. Both above methods
deform the outer surface of the object while interior hollowing it-
self cannot satisfy the functional requirements. Different from the
volume-based methods, Musialski et al. [2015] optimized an offset
surface of the input mesh as the interior shape and presented a sub-
space method to accelerate the computation. Inspired by previous
work, we adopt an octree to voxelize the input model and design an
iterative algorithm to optimize and merge voxels. However, instead
of the simple cube, we design a specific support-free structure and
use it as the voxel, such that the optimization result can be directly
printed. Moreover, rather than optimizing the hollowing variables
and then rounding them to the binary states, we use the wall thick-
ness of each voxel as the optimization variable, which is inherently
continuous.

3 Support-free Interior Carving

We introduce a computational framework for carving support-free
interior voids inside an object. Taking a 3D triangular mesh as in-
put, we first voxelize its volume by building and refining an oc-
tree. Each voxel is a support-free rhombohedron, whose central
hollow part is controlled by the wall thickness (see Figure 2a, 2b).
We parameterize common integral terms over each voxel as ana-
lytic functions of its wall thickness. Based on the parameterization,
we formulate a continuous optimization problem for desired appli-
cation by using wall thicknesses of all voxels as variables. After
the optimization, we dither non-printable voxels while ensuring the
whole structure is still support-free. Finally, by alternating the wall
thickness optimization and voxels dithering, we obtain a hollowed
model which both satisfies the desired functional purposes and can
be printed out without using addtional supports inside the interior
voids (see Figure 2c, 2d).

3.1 Support-free Voxel

As the basic unit of our framework, we need a voxel that: (1) is self-
supportable during printing; (2) can be tiled to occupy the interior
voids; (3) can change its hollowing state by computational methods.

A key observation is that a hollowed rhombohedron, i.e. a cube
scaled in the diagonal direction (Figure 2a), satisfies all above re-

quirements. In this unit structure, all the walls have the same slope
angle α, which depends on the scaling factor s:

α = arctan(
1

2s

√
2).

With sufficiently small α (we fix α = 30◦), the structure is safe
to print without supporting structures. Using such basic unit, we
refine an octree to generate tiled voxels fully occupying the body
(Figure 2b). The cavity volume of each voxel Vi can be adjusted
by its wall thickness ti. The voxel Vi is empty if ti = 0 and solid
if ti = 0.5 l, where l is the side length (Figure 2a). Using the wall
thicknesses of the voxels, we can control the mass distribution of
the model to satisfy various design targets.

3.2 Voxel Integral Parametrization

The energy functions in mass distribution optimization problems,
such as make-it-stand [Prévost et al. 2013] and spin-it [Bächer et al.
2014], are composed of integral terms over the shape. For example,
the center of mass c is defined as

c =

∫
V−Vh

p dV∫
V−Vh

dV
, (1)

where p is the position vector, V is the body of input model and Vh

is the hollow parts inside it.

To formulate an analytic expression of voxel wall thicknesses, we
rewrite the hollow integral in Equation (1) as a sum of integrals over
each voxel: ∫

Vh

p dV =
∑
i

∫
Vi(ti)

p dV (2)

where ti is the wall thickness of voxel Vi, and Vi(ti) is the central
hollow part of Vi.

For the sake of simplicity, we use a 2D voxel (Figure 3a) to demon-
strate our derivation. We perform the above integration in a local
coordinate system X′OY′ that is parallel to the voxel borders:∫

Vi(ti)

p dV =

∫ x′
1−ti

x′
0+ti

∫ y′
1−ti

y′
0+ti

(~X ′x′ + ~Y ′y′)|J | dy′dx′

= c3t
3
i + c2t

2
i + c1ti + c0

(3)

where ~X ′ and ~Y ′ are normalized vectors in direction of axes X′

and Y′, J is the Jacobian matrix of coordinate transformation, and
x′0, x′1, y′0, y′1 are coordinates in X′OY′ defining the integration do-
main of Vi. The integration result is a cubic polynomial of variable

wall

hollow

X'

X

Y
Y'

O

x'0

x'1

y'0

y'1

(a) Support-free voxel

seedseed

(b) Ghost voxels

valid

seedwalls
removed

(c) Valid case

invalid

revoke

seed
floating

(d) Invalid case

... seed

Merged
Merged

Merged

(e) Dithering result

Figure 3: 2D support-free voxel and dithering. (a) The support-free voxel in 2D case. (b) The ghost voxels whose wall thicknesses are close
to 0. The dithering starts from the voxel marked as “seed”. (c) The walls between the seed voxel and one of its neighbour are removed. (d) An
invalid removing operation is detected, as the walls highlighted in red become floating (non-printable). (e) The interior voids after dithering.
The voxels are merged into three disjoint sets, while the whole structure is still support-free.

ti, and the coefficients c0, c1, c2, c3 are constant vectors computed
from |J |, X ′0, Y ′0 , x′0, x′1, y′0, y′1.

The above derivation can be simply generalized to different applica-
tions. In fact, we can define the integral over Vi(ti) as a functional

Pi(f) =

∫
Vi(ti)

f(p) dV, (4)

where the integrand f(p) is application-specific. For example, the
integrands used in Spin-It [Bächer et al. 2014] are listed in Equa-
tion (9). Note that no matter which integrand is used, the integration
result of Equation (4) is always an analytic function of ti. The 3D
voxel parametrization is similar to the 2D case (see Appendix A for
the details).

Optimization. Based on the above parameterization, we define a
general optimization problem by using the wall thicknesses {ti} as
the variables:

min
{ti}

E

(
m∑
i

Pi(f0),

m∑
i

Pi(f1), ...,

m∑
i

Pi(fn)

)
s.t. 0 ≤ ti ≤ 0.5 l,

(5)

where m is the number of voxels and n is the number of customiz-
able integrands, and the energy function E defines the relationship
between these integral terms for specific application.

3.3 Ghost Voxels Dithering

When the continuous optimization ends, we obtain a set of voxels
with ideal wall thicknesses ti ∈ [0, 0.5 l]. However, due to the
3D printing precision, there exists a minimum printable thickness
tmin. A voxel cannot be safely printed if its wall thickness is less
than tmin.

We indicate the non-printable voxels in the optimization result as
G = {Vi | ti ≤ tmin}, i.e. the ghost set. To ensure the printability,
we need to re-assign the wall thicknesses of these ghost voxels to
either 0 (removed) or tmin (printable). We hope this change would
keep the new wall thicknesses as close to the continuous optimiza-
tion values as possible. Meanwhile, we must also ensure it does
not lead to any floating walls (Figure 3d) that are not support-free.
Inherently, this is a discrete optimization problem which has an ex-
ponential space.

We adopt a greedy strategy to tackle with this dithering (continuous
to discrete) problem. Specifically, we execute a depth-first search
(DFS) to gradually remove the walls between adjacent ghost voxels

with thicknesses close to 0, while perserving the support-free prop-
erty of the whole structure. The complete algorithm is summarized
in Algorithm 1.

We use 2D case to illustrate this process (Figure 3). Starting from
a ghost voxel Vi that has thickness close to 0 as the seed, we add
it into the access record A and check its neighbors. For each ghost
neighbor Vj that also has thickness close to 0, we try to remove the
walls between Vj and its neighbors already in A (Figure 3c), and
check if any walls on top of Vj become floating. If any such walls
exist (Figure 3d), we add the walls removed just now back; other-
wise, we add Vj intoA and recursively consider its neighbors. The
DFS stops when no more voxels can be added into A (Figure 3e).
At last, we assign tmin to all the remaining walls of ghost voxels.

The situation in 3D is similar except that each voxel has six neigh-
bors. Figure 2c shows a result of ghost voxels dithering on a 3D
model, which is printed without using any support materials inside
the interior voids.

Algorithm 1 Ghost voxels dithering.

1: procedure DFSDITHER(voxel Vi, set A)
2: Add Vi into A
3: for all ghost voxel Vj adjacent to Vi do
4: if Vj /∈ A and tj < 0.5 tmin then
5: Remove walls between Vj and its neighbors in A
6: if No walls on top of Vj become floating then
7: DFSDither(Vj , A)
8: else
9: Add the removed walls back

10: end if
11: end if
12: end for
13: end procedure
14: procedure DITHERGHOSTVOXELS(set G)
15: A ← ∅ . access record
16: for all ghost voxel Vi ∈ G do
17: if Vi /∈ A and ti < 0.5 tmin then
18: DFSDither(Vi, A)
19: end if
20: end for
21: All remaining walls in G ← tmin

22: end procedure

3.4 Iterative Optimization

Our method solves an application-specific optimization problem for
the wall thickness of each voxel, and then dither all the ghost voxels
to ensure the printability. Most walls between ghost voxels are re-
moved during the dithering process, only a few necessary ones are
left to preserve support-free property of the whole structure. As the
dithering change the wall thicknesses of ghost voxels, we adopt an
iterative optimization strategy to alternate between the continuous
optimization and discrete dithering, until the voxel structure does
not change anymore. We list all the steps below.

Initialization. At the beginning, we voxelize the input model and
precompute the parameterization coefficients of each voxel.

Continuous optimization. At the first stage of each iteration,
we solve the continuous optimization (nonlinear programming) for
wall thicknesses, using the range [0, 0.5 l] for box constraints.

Ghost voxels dithering. At the second stage of each iteration, we
dither all the ghost voxels to convert their optimized wall thick-
nesses to discrete choices {0, tmin}. After that, for each f in
the energy function we add a compensation term

∫
V∆walls

f(p) dV

onto
∑

i Pi(f), and restart the continuous optimization again. The
V∆walls indicates the changed volume due to the wall differences in
ghost voxels before and after dithering.

Note that we record the connected cavities (see Figure 3e) formed
in previous iterations. We do not dither the ghost voxels in a con-
nected cavity unless any such voxel has an optimized thickness
ti > 0.5 tmin in current iteration. We found that the strategy accel-
erates the dithering speed and convergence very often.

Convergence. We break the loop when the dithering result has no
change between two consecutive iterations, or the maximum num-
ber of iterations is reached. Finally, we mesh the interior voids from
the voxel structure for printing.

4 Applications and Results

We apply our support-free interior carving framework described in
Section 3 to two design problems and print real objects for valida-
tion.

We implement and test our method on a desktop PC with Intel i7-
4770 3.4GHz CPU and 16GB RAM. All programs are executed in
a single thread. The BLEIC routine of the ALGLIB [Bochkanov
2013] is used to solve the continuous optimization. All results are
printed by a low-cost FDM printer using PLA materials. We con-
figure the printing software to forbid the generation of supporting
structures inside the interior voids.

The object sizes are between 10cm and 20cm. To ensure the shells
are thick enough to print, we shrink the outer surface inward by
0.5mm to obtain the voxelization boundary. The minimal printable
wall thickness tmin is set to 0.25mm.

0 1 2 3 4 5
100

200

300

400

500

600

700
Energy

Iteration

(a) SPHERES

0 2 4 6 8 10
0

5

10

15

20

25

30
Energy

Iteration1 3 5 7 9

(b) ELEPHANT

Figure 4: Convergence curves of our method.

(a) GIRAFFE

(b) ARMADILLO

(c) SPHERES

Figure 5: Results of the static balancing application. The left
column highlights the computed interior voids (brown), the ground-
contact region (green), the center of mass of the input (crimson), the
center of mass of the result (red), and the center of ground-contact
region (blue).

4.1 Statically Balanced Object Design

Prévost et al. [2013] proposed a method for designing the static
stability, which hollows an object in a heuristic way to adjust its
center of mass. Due to the existence of interior voids, they have to
print multiple decomposed parts to remove the supporting materials
therein, and then glue them all together.

We use our optimization method to generate standing objects which
can be printed as a whole. We define the objective function as the
squared horizontal distance between the center of mass c and the
center of ground-contact region g:

E(t) = (cx(t)− gx)2 + (cy(t)− gy)2, (6)

where t is the vector stacking all voxel wall thicknesses, and c can
be written as the parametrized formulation

c(t) =

∫
V
p dV −

∑
i Pi(p)∫

V
dV −

∑
i Pi(1)

. (7)

Thus the objective function is an analytic function of t, whose Ja-
cobian is straightforward to derive.

Figure 1 and Figure 5 show the optimization and printing results.
Note that how the centers of mass are moved from the outside to
the inside of the ground-contact region by the optimization. More
importantly, the generated interior voids are support-free. We can
see that most walls between ghost voxels are removed to form large
connected spaces, while the remaining walls form sparse pillars

Model Tree Levels / #DOF Voxel Size (mm) Pre Time (s) Poly Coef (s) #Iter / Total Time (s) NLP / Dithering (s)
HORSE 7 / 5,203 1.40 6.90 0.17 4 / 4.49 4.19 / 0.02

ARMADILLO 7 / 16,451 1.17 8.96 0.55 4 / 47.79 46.95 / 0.05
GIRAFFE 8 / 25,517 0.84 8.30 0.83 5 / 110.14 108.77 / 0.10
SPHERES 7 / 26,158 1.77 7.80 0.86 4 / 150.10 148.55 / 0.07

ELLIPSOID 6 / 6,278 2.29 3.57 0.25 8 / 25.67 24.94 / 0.04
ELEPHANT 7 / 10,356 1.31 8.71 0.42 9 / 42.16 41.08 / 0.07

TEAPOT 7 / 40,370 1.14 11.28 1.59 4 / 224.09 221.47 / 0.12

Table 1: Statistics of voxelization and performance. From left to right: the number of octree levels / voxels, the voxel size, the preprocessing
time, the parametrization time, the total number of iterations / the total computation time, the total time of continuous optimization / ghost
voxels dithering. Level one of the octree is the bounding box of input mesh. Preprocessing includes shrinking the input mesh to get the interior
boundary, building the octree, and finding the ground-contacts.

Model Input Idealized Naive Dithered
HORSE 3.49 0.01 1.53 0.46

ARMADILLO 3.33 0.74 2.31 1.45
GIRAFFE 9.90 3.79 8.25 6.48
SPHERES 24.66 11.78 18.94 12.32

Table 2: Efficacy of dithering. From left to right, the values are
the distances (unit: mm) from target point to the center of mass of
respectively the input, the continuous optimization result, the naive
assignment result, and the dithering result.

Figure 6: ELLIPSOID. The left figure highlights the computed in-
terior voids (brown), the ground-contact point (blue), the principal
axes of the input (transparent arrows), and the principal axes of the
result (solid arrows).

running through the voids. The iterative optimization is crucial to
the result, e.g. the interior voids of the Spheres are mainly split into
the left and right parts formed in different iterations (see Figure 4
for the descent of energy).

The statistics of voxelization and performance are listed in Table 1.
For all the models (top rows), our method converges within 5 it-
erations, while the running time depends on the number of DOFs.
Compared with the continuous optimization, the parametrization
and dithering take much less time.

In Table 2, we compute the horizontal distances between target
point g and the centroids of four different models: (1) the input
model (solid); (2) the continuous optimization result (idealized but
non-printable); (3) naively assigning tmin to all the ghost voxel
walls; (4) our dithering result. Compared with the input, the con-
tinuous optimization largely decreases the distance, which is theo-
retically the best result our support-free voxels can achieve. Note
that we still need to trade off the distance for printability by tacke-
ling with the ghost voxels, and apparently, our dithering algorithm
keeps the centroid much closer to the target point than the naive
assignment, which proves its efficacy.

4.2 Spinnable Object Design

Bächer et al. [2014] proposed a method to design the rotational sta-
bility, which uses an adaptive octree to voxelize the input model and
then optimizes the fill variable of each voxel to adjust the moments
of inertia. Again, a cumbersome cut-and-glue process is necessary
for fabricating the design result.

We use our optimization method to generate spinnable objects that
can be printed as a whole. According to Spin-It [Bächer et al. 2014],
the rotational dynamics properties of an object is derived from its
inertia tensor:

I =

sy2 + sz2 − sz
2

s1
−sxy −sxz

−sxy sx2 + sz2 − sz
2

s1
−syz

−sxz −syz sx2 + sy2

 , (8)

where sf are volume integrals that can be represented by our inte-
gral parametrization:

sf (t) =

∫
V

f dV −
∑
i

Pi(f),

where f = {1, x, y, z, x2, y2, z2, xy, yz, zx}.
(9)

Therefore, the energy (see Appendix B) derived from elements of
I is a closed-form expression of t.

Figure 2 and Figure 6 show our optimization results on the ELE-
PHANT and ELLIPSOID. Initially, the maximal principal axis (trans-
parent arrows in Figure 2e and Figure 6 left) is not aligned with
the desired rotating axis (vertical), and the center of mass is also
not vertically aligned with the ground contact point. After mini-
mizing the spinning energy, both the maximal principal axis (solid
arrows) and the center of mass (solid points) satisfy the design re-
quirements. All the fabricated objects spin well on the table (see
the video). Note that there are many tiny voids in the proximity of
ELLIPSOID center (Figure 6 left). This demonstrates the advantage
of the continuous wall thicknesses. Since the cavity volume of each
voxel vary smoothly, higher accuracy can be achieved.

The statistics of voxelization and performance for these models are
reported in Table 1 (bottom rows). Similar to the design of stat-
ically balanced objects, most of the computation time is spent on
the continuous optimization.

We compare our method with the state of the art interior carving
method [Bächer et al. 2014] on the TEAPOT. By setting the max-
imal refinement level of the adaptive octree to 9 and the starting
refinement level to 5, the Spin-It method converges in about 2 min-
utes. Figure 7 shows the generated interior voids for both methods.
The two have similar overall shapes, while our result contains a few
pillars to ensure the support-free property. As reported in Table 3,

Figure 7: Comparison with Spin-It on TEAPOT. (left) The result
of Spin-It. (right) The result of our method.

Espin COM MPA
Spin-It 0.876 (0.014, 22.720, 0.028) (-0.008, 0.999, -0.005)
Ours 1.004 (0.002, 23.192, -0.003) (-0.002, 0.999, 0.007)

Table 3: Comparison on TEAPOT. From left to right: the spinning
energy, the distance from the optimized center of mass to the target
point, the direction of the maximal principal axis.

the pillars make our spinning energy a little higher than Spin-It.
But note that the center of mass and the maximal principle axes are
quite similar for both methods.

5 Conclusion and Discussion

We propose a novel method to carve interior voids inside objects for
functional design optimization. Such objects can be directly fabri-
cated by an FDM printer without using any support materials inside
the interior voids, excluding the necessity of the tedious cut-and-
glue process. We design a support-free voxel as the basic unit for
voxelization and parameterize the integral terms over each voxel as
closed-form expressions of its wall thickness. The wall thicknesses
are then used as continuous variables for the application-specific
optimization. An algorithm is developed to dither ghost voxels,
ensuring printability and preserving support-free property of the
object. We iteratively carve the interior voids by alternating the
continuous optimization and the discrete dithering. We apply our
method to design statically balanced objects and spinnable objects,
and print real objects for validation.

We adopt a greedy strategy for dithering, which may get stuck in a
local minimum. For such combinatorial optimization, a probabilis-
tic technique like the simulated annealing can get better results, but
at the cost of much more computation time. Our method is apt to
generate more pillars when the ceilings of the interior voids are flat
(Figure 7), which is probably less optimized. Our result also de-
pends on the printing orientation, thus finding a best orientation for
the support-free structure can be an interesting future work.

References

BÄCHER, M., WHITING, E., BICKEL, B., AND SORKINE-
HORNUNG, O. 2014. Spin-it: Optimizing moment of inertia
for spinnable objects. ACM Trans. Graph. 33, 4, 96.

BOCHKANOV, S., 2013. Alglib (www.alglib.net).

CHEN, X., ZHANG, H., LIN, J., HU, R., LU, L., HUANG, Q.,
BENES, B., COHEN-OR, D., AND CHEN, B. 2015. Dapper:
decompose-and-pack for 3d printing. ACM Trans. Graph. 34, 6,
213.

CHRISTIANSEN, A. N., SCHMIDT, R., AND BÆRENTZEN, J. A.
2015. Automatic balancing of 3d models. Computer-Aided De-
sign 58, 236–241.

DUMAS, J., HERGEL, J., AND LEFEBVRE, S. 2014. Bridging the
gap: Automated steady scaffoldings for 3d printing. ACM Trans.
Graph. 33, 4, 98.

GAO, W., ZHANG, Y., NAZZETTA, D. C., RAMANI, K., AND
CIPRA, R. J. 2015. Revomaker: Enabling multi-directional and
functionally-embedded 3d printing using a rotational cuboidal
platform. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology, ACM, 437–446.

HU, R., LI, H., ZHANG, H., AND COHEN-OR, D. 2014. Approx-
imate pyramidal shape decomposition. ACM Trans. Graph. 33,
6, 213.

LU, L., SHARF, A., ZHAO, H., WEI, Y., FAN, Q., CHEN, X.,
SAVOYE, Y., TU, C., COHEN-OR, D., AND CHEN, B. 2014.
Build-to-last: Strength to weight 3d printed objects. ACM Trans.
Graph. 33, 4, 97.

LUO, L., BARAN, I., RUSINKIEWICZ, S., AND MATUSIK, W.
2012. Chopper: Partitioning models into 3D-printable parts.
ACM Trans. Graph. 31, 6 (Dec.).

MUSIALSKI, P., AUZINGER, T., BIRSAK, M., WIMMER, M.,
AND KOBBELT, L. 2015. Reduced-order shape optimization
using offset surfaces. ACM Trans. Graph. 34, 4, 102.

PRÉVOST, R., WHITING, E., LEFEBVRE, S., AND SORKINE-
HORNUNG, O. 2013. Make it stand: balancing shapes for 3d
fabrication. ACM Trans. Graph. 32, 4, 81.

REINER, T., AND LEFEBVRE, S. 2016. Interactive modeling of
support-free shapes for fabrication. In Eurographics (short pa-
pers), Eurographics Association.

STAVA, O., VANEK, J., BENES, B., CARR, N., AND MĚCH, R.
2012. Stress relief: improving structural strength of 3d printable
objects. ACM Trans. Graph. 31, 4, 48.

UMETANI, N., AND SCHMIDT, R. 2013. Cross-sectional structural
analysis for 3d printing optimization. SIGGRAPH Asia 5, 1–4.

VANEK, J., GALICIA, J. A., AND BENES, B. 2014. Clever sup-
port: Efficient support structure generation for digital fabrica-
tion. Computer graphics forum 33, 5, 117–125.

WANG, L., AND WHITING, E. 2016. Buoyancy optimization for
computational fabrication. Computer Graphics Forum 35, 2.

WANG, W., WANG, T. Y., YANG, Z., LIU, L., TONG, X., TONG,
W., DENG, J., CHEN, F., AND LIU, X. 2013. Cost-effective
printing of 3d objects with skin-frame structures. ACM Trans.
Graph. 32, 6, 177.

WANG, W., CHAO, H., TONG, J., YANG, Z., TONG, X., LI, H.,
LIU, X., AND LIU, L. 2015. Saliency-preserving slicing op-
timization for effective 3d printing. Computer Graphics Forum
34, 6, 148–160.

WANG, W., ZANNI, C., AND KOBBELT, L. 2016. Improved sur-
face quality in 3d printing by optimizing the printing direction.
Computer Graphics Forum 35, 2.

YAO, M., CHEN, Z., LUO, L., WANG, R., AND WANG, H. 2015.
Level-set-based partitioning and packing optimization of a print-
able model. ACM Trans. Graph. 34, 6, 214.

ZHANG, X., XIA, Y., WANG, J., YANG, Z., TU, C., AND WANG,
W. 2015. Medial axis tree–an internal supporting structure for
3d printing. Computer Aided Geometric Design 35, 149–162.

ZHANG, X., LE, X., PANOTOPOULOU, A., WHITING, E., AND
WANG, C. C. 2015. Perceptual models of preference in 3d
printing direction. ACM Trans. Graph. 34, 6, 215.

ZHOU, Q., PANETTA, J., AND ZORIN, D. 2013. Worst-case struc-
tural analysis. ACM Trans. Graph. 32, 4, 137.

A Coefficients of 3D Voxels Parameterization

Here we describe how to compute all the coefficients for 3D voxels
parametrization. The general form of the integrals over a voxel Vi
is

Pi(f) =

∫ x1−ti

x0+ti

∫ y1−ti

y0+ti

∫ z1−ti

z0+ti

f(p) dzdydx,

where f(p) = {1, x, y, z, x2, y2, z2, xy, yz, zx}, and x, y, z are
coordinates of the 3D position vector p. By integrating them in the
boundary-aligned coordinate system of Vi (similar to Figure 3a),
we get polynomials of ti.

We do not need to derive all the closed-form formulas manually.
By substituting the above f(p) into the integral, one could find that
there are four general forms:

T (ti) =

∫ x1−ti
x0+ti

∫ y1−ti
y0+ti

∫ z1−ti
z0+ti

|J | dz′dy′dx′

∫ x1−ti
x0+ti

∫ y1−ti
y0+ti

∫ z1−ti
z0+ti

Amα|J | dz′dy′dx′

∫ x1−ti
x0+ti

∫ y1−ti
y0+ti

∫ z1−ti
z0+ti

AmBmα
2|J | dz′dy′dx′

∫ x1−ti
x0+ti

∫ y1−ti
y0+ti

∫ z1−ti
z0+ti

AmBnαβ|J | dz′dy′dx′

,

where

A,B = {X ′, Y ′, Z′}, m, n = {0, 1, 2}, α, β = {x, y, z}.

We write programs to compute the above terms, which take dif-
ferent combinations of A,B,m, n, α, β as inputs and output the
coefficients of the integration results (fifth-order polynomials).

B Energy of Spinnable Object Design

The spinning energy term Espin is formulated as:

Espin = (
Ia
Ic

)2 + (
Ib
Ic

)2,

where Ia, Ib, Ic are the principal moments of inertia and Ic = I33.
The Ia and Ib can be computed as:

Ia, Ib =
1

2
(I11 + I22 ±

√
(I11 − I22)2 + 4I2

12),

where Iij is the ij entry of tensor I . To make an object spinnable,
we still need to align its center of mass with the ground contact
point vertically and align its maximal principal axis to the rotating
axis (z axis). We achieve this by adding two penalty terms

Ecom = (cx)
2 + (cy)

2, Eaxis = (
I13

I33
)2 + (

I23

I33
)2

into the objective function, such that the optimization is formulated
as:

min ωspinEspin + ωcomEcom + ωaxisEaxis

s.t. 0 ≤ ti ≤ 0.5 l,

where ωspin, ωcom and ωaxis are the relative weights.

