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Abstract—We present a semi-automatic method for producing human bas-relief from a single photograph. Given an input photo of one
or multiple persons, our method first estimates a 3D skeleton for each person in the image. SMPL models are then fitted to the 3D
skeletons to generate a 3D guide model. To align the 3D guide model with the image, we compute a 2D warping field to non-rigidly
register the projected contours of the guide model with the body contours in the image. Then the normal map of the 3D guide model is
warped by the 2D deformation field to reconstruct an overall base shape. Finally, the base shape is integrated with a fine-scale normal
map to produce the final bas-relief. To tackle the complex intra- and inter-body interactions, we design an occlusion relationship
resolution method that operates at the level of 3D skeletons with minimal user inputs. To tightly register the model contours to the
image contours, we propose a non-rigid point matching algorithm harnessing user-specified sparse correspondences. Experiments
demonstrate that our human bas-relief generation method is capable of producing perceptually realistic results on various
single-person and multi-person images, on which the state-of-the-art depth and pose estimation methods often fail.

Index Terms—human bas-relief, multi-person, occlusion resolution, contour matching, single image.
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1 INTRODUCTION

BAS-RELIEF, a geometric abstraction of real-world objects,
has been regarded as a respectable art form since the ancient
times (Figure 1). Underlying its remarkable expressivity is
a so-called phenomenon of bas-relief ambiguity [1], which
states that given the right lighting conditions, the shading
and shadowing effects of a Lambertian surface could be
invariable under depth flattening when looking at the front
view. To make its creation less laborious, research on bas-
relief generation from various inputs has been active over
the last decades [2], [3]. Among them, a single image is the
most easy-to-acquire input form for bas-relief generation
due to its ubiquity. However, for general objects, single-
image based bas-relief generation is highly ill-posed due to
the absence of 3D information and thus it often requires a
large number of user interventions in different processing
steps to guide the generation [4], [5].

Recent work succeeds in producing bas-reliefs for single
images of specific objects, such as human face [6], [7], [8]
and hair [9]. Prior knowledge of these objects is exploited
to keep the amount of user interaction acceptable. In light
of this, we seek to generate the bas-relief of humans from
a single photograph. This task is, however, challenging
due to its unique characteristics. First, although there exists
extensive research on human shape estimation, accurately
estimating the human shapes along with their dresses and
accessories from a single image is difficult [10]. More im-
portantly, people in a group photo tend to have complex
body interactions and severe occlusions, which precisely
reflects the emotional intimacy and communication between
family members or close friends. Such complex intra- and
inter-body interactions pose additional challenges to most
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existing 3D human shape estimation methods.
In this paper, we present a novel semi-automatic pipeline

for generating a human bas-relief from a single photograph.
The output bas-relief is a composition of an overall base
shape and a detailed normal map where the detailed normal
map is baked into the base shape via optimization [11]. To
produce an accurate base shape, we first fit the SMPL hu-
man template [12] to multiple 3D skeletons estimated from
the input image, forming a guide 3D model. In an essential
stage, before we fit the SMPL models, we allow minimal
user inputs to indicate depth ordering of skeletal bones
to resolve the complex intra- and inter-body interactions,
motivated by the opinion that the editing of the structure is
easy for an average user [13]. We then compute a 2D defor-
mation to non-rigidly register the projection contours of the
guide 3D model to the body contours of the input image.
Accordingly, we design strategies to incorporate minimal
user interactions into the non-rigid contour registration to
specify sparse correspondence points. Afterwards, we warp
the normal map of the guide 3D model by the previously
computed 2D deformation to obtain a base normal map
tightly aligned with the image, from which we reconstruct

Fig. 1: A stone relief of Barabudur built in the 9th century.
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Fig. 2: Overview of the Pipeline. Given a single group photo as input, our method produces a corresponding bas-relief
by integrating an overall base shape and a fine-scale normal map. We first generate a multi-person guide model by fitting
a template model to the estimated 3D skeletons. Then we extract image contours of the people in the photo from an
nn-predicted probability map. Finally, we non-rigidly register the guide model to the image contours to generate the base
shape. The normal map is obtained from the gradient information of the photo.

a compressed height field, i.e., the overall base shape of the
bas-relief.

We demonstrate both the efficacy and efficiency of the
human bas-relief generation method on diverse sets of
single-person and multi-person images. Experiments show
that our method produces perceptually realistic results for
single images with complex interactions and occlusions
intra- and inter-bodies, on which the state-of-the-art meth-
ods for depth and pose estimation often fail.

Our main contributions are:

• The first semi-automatic pipeline for generating hu-
man bas-reliefs from a single image;

• An effective occlusions resolution method incor-
porating user-specified depth constraints between
skeleton bones;

• A robust non-rigid contour registration method in-
corporating user-specified point correspondences.

2 RELATED WORK

2.1 Bas-Relief Generation
Bas-relief generation has been an active research field of
computer graphics for the last decades. Various methods
have been introduced for producing bas-reliefs from a va-
riety types of inputs, such as 3D shapes [14], [15], [16],
[17], point clouds [18], photos [7], [13], [19], sketches [20],
line-drawings [21], and paintings [4], to name a few. For
comprehensive details of this research field, please refer to
the recent surveys [2], [3].

Bas-relief is essentially a shallow height field that looks
realistic only in the vicinity of the front view. When full
3D data is available, bas-relief generation boils down to
a depth compression problem [15], [22], typically through
nonlinear functions or adaptive histograms. A height field
is then reconstructed to obey the compressed 3D data.

During the reconstruction phase, different strategies are
presented for controlling the resultant shapes. For example,
the gradient-domain information is mostly preserved by
solving a Poisson equation [15], [16]. The rolling guidance
normal filter is employed to decouple the normal map into
two layers for separate shapeup of base and details [17].
We also design our pipeline to handle the overall structure
and shape details separately for further blending. We use
the normal map to keep the gradient information during
base shape generation. However, our input is merely a
single photograph, while this line of work requires rich 3D
information, which prevents the direct application of them
to our problem.

For image-based bas-relief generation, the biggest chal-
lenge is the accurate extraction of visually significant and
meaningful 3D information from the 2D input. Due to the
ambiguities and complexities from its inverse nature, pre-
vious methods often involve user interventions to specify
semantic properties of the underlying scene, e.g., lighting
conditions [19], region-based segmentations [4], and depth-
orderings [5]. Such user guidances largely help resolve the
ambiguity and make the 3D computation reliable. However,
those methods target general objects and scenes, making
their user interactions impractical and ineffective for the
human body, which requires a lightweight design.

Recently, there are image-based bas-relief generation
methods leveraging prior knowledge and focusing on par-
ticular objects, such as human faces [6], [8] and hairs [9]. The
method presented by Zhang et al. [7] for portrait images is
closest to our work. Their work first fits the input portrait
image with a template 3D face to get an initial model,
and then uses bi-Laplacian deformation to align the initial
3D face with the 2D feature points. Finally, they compress
the depth of the aligned 3D face and enhance its fine-
scale details via a Shape-from-Shading-based optimization.
In their pipeline, user interactions are involved in marking
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feature points of the face and painting ambiguous regions
of the normal map. We share with their work the fit-and-
deform strategy at the high-level. However, compared with
the face, humans in a multi-person image have a broader
exploration space due to the non-rigid shapes and complex
body language. We resort to 3D skeletons for resolving
the occlusions among body parts. We also detect critical
contour points to constrain the body shapes and adopt
TPS rather than bi-Laplacian to handle the highly-nonlinear
registration. User interaction strategies are correspondingly
designed to ensure a minimal requirement of manual efforts.

2.2 3D Human Shape Estimation

As the 3D human shape estimation is a rather broad topic,
we only discuss the estimation methods based on the input
of a single image. The human bodies are prevalently repre-
sented as 3D templates [12], [23] with decoupled sets of pa-
rameters, i.e., the pose and shape, statistically learned from
high-precision scanning data. With the recent availability of
large-scale human datasets [24], [25], [26], learning-based
estimation methods obtain impressive performance. Some
directly reconstruct the non-parametric human shapes [25],
[27], while most others incorporate the parametric human
bodies into the training loop [28], [29], [30], [31], [32].

Pose inherently describes the joint locations of human
bodies. Recent advances in both 2D [33], [34] and 3D [35],
[36], [37] estimation methods make the images or videos
reliable sources of pose information. Thus, human shape
estimation methods often take the pose as an intermediate
representation in the network or for the joints regularization
[28], [30], [31], [38]. For example, Kanazawa et al. [29]
present a network to regress the parameters of the SMPL
model, and supervise the training with a joint-reprojection
error and an adversarial prior. Besides the parameters re-
gression, Alldieck et al. propose to regress a per-vertex 3D
offset field [39] or a UV-space displacement map [40] upon
the SMPL model to improve the image-space alignment
and fine details. However, these model-based methods only
support the single-person scenario. They have difficulties
guaranteeing a tight alignment with the body contours in
the image space, even with the per-vertex optimization.
Jiang et al. [41] adopt R-CNN to detect all people in a
multi-person image and estimate their SMPL parameters.
Interpenetration and depth-ordering losses are incorporated
during training to encourage a coherent reconstruction.
Since it is model-based, the image space alignment is not
tight. Furthermore, intra- and inter-body interactions are
insufficient in the training data, leading to unsatisfied pre-
dictions on family photos. In this work, we resort to the
human poses as the guide for body regression, and we
present a concise interaction model for effective occlusion
resolution.

Annotations like the part segmentation [31] and silhou-
ette [28], [42] are also used as intermediate predictions to
help the supervision. However, high-quality part segmenta-
tion data are costly to collect and challenging to regress [25].
Moreover, the pixel-wise predictions are hard to be rectified
interactively. On the other hand, the silhouette used in pre-
vious methods [28], [42] often ignores the internal contours,
which are crucial for multi-person scenarios with complex

self-occlusions and mutual occlusions. Also, the rectification
mechanism is absent when the contour matching is not tight
or even erroneous. Instead, we consider both the internal
and external contours for non-rigid registration to generate
the base shape, and we design an easy-to-use interaction for
rectification. The recent work [32] also learns the image-to-
surface correspondence [43] to regularize the shape estima-
tion. While the method can work on the multi-person case
to some extent, it does not explicitly tackle the occlusion
relationships. In contrast, we design an interaction module
on 3D skeletons to resolve all the incorrect occlusions intra-
or inter-bodies.

Human depth estimation is most relevant to our work.
Tang et al. [10] present a depth estimation method for human
images. The end-to-end pipeline has intermediate modules
for part segmentation, 3D joints, normals, and two-levels of
depths. They compose the final depth from a base shape and
a detailed shape and further refine it by the normal infor-
mation. Smith et al. [44] and Gabeur et al. [45] propose to
first regress the front and back depth, and then compose the
full body through template fitting or Poisson reconstruction.
The network training depends on a normal map loss or an
adversarial loss. For these works, the accuracy and appli-
cability of depth predictions are somewhat limited by the
shape and pose variations and the effective resolutions of
the synthetic training data. Moreover, multi-person images
are not considered. In a method presented by Li et al. [46],
they first obtain depth maps by running a multiview stereo
method on real-world mannequin imitation videos and then
train a depth estimation network using the obtained data
for supervision. Their method can capture rough depth
profiles on multi-person images. However, the body shapes,
details, and occlusions are often missing for family photos,
possibly due to the high dynamic range of depth data and
the limited effective resolution of the acquired ground truth.
To overcome the shortage of 3D human data, recent works
[47], [48] exploit dance videos from social media and design
warping-based strategies to enable self-supervision. In this
work, we tackle the multi-person input by designing user-
interaction incorporated mechanisms to handle the occlu-
sion resolution and contour matching. The final bas-relief
faithfully recovers both the large-scale shape variations and
fine-scale geometric details in the image.

Recently, template-free methods obtain promising re-
sults on single-view 3D human reconstruction. For example,
Zheng et al. [49] train a volume network to regress the
spatial occupancy of 3D shapes on a voxel grid. While they
also adopt a normal refinement network to augment the
reconstructed shape, the fine details are still restricted by the
voxel representation’s resolution limitation. Among these
works, PIFu [50], and its high-res successor PIFuHD [51]
achieve state-of-the-art reconstruction quality. They propose
to learn an implicit occupancy function in a pixel-wise way
rather than relying on explicit volume representations or
global latent features. Although the method often performs
well on single-person images, it does not directly apply to
multi-person input due to its data-driven nature. Moreover,
the occlusions in such cases are not explicitly addressed, and
multi-person data paired with 3D ground truth are still rare.
In contrast, our method resorts to a lightweight framework
to incorporate sparse user constraints on occlusion resolu-
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tion and does not depend on a 3D multi-person dataset.

3 OVERVIEW

Our pipeline requires a single image I , of one or a group
of persons, as the only input (see Figure 2). The output
bas-relief H is a shape approximation of the people with
their clothes in I . We construct H by merging two levels of
ingredients:

H = merge(Hb,N g), (1)

where Hb is a base shape containing the global shape and
layout of human bodies compressed in depth, and N g is a
normal map capturing fine-grained geometric details such
as the wrinkles of clothes and facial details in the image.

We are not trying to recover the exact 3D human body
from I as single-image based reconstruction is generally ill-
posed. Our goal is to generate a compressed height field,
i.e., the bas-relief of the people. Therefore, the first task
is to compute a smooth and rough human model as a
guidance of overall shape and layout. However, directly
regressing such a model with accurate spatial relationships
from the input image is challenging, even with state-of-
the-art methods like [32], due to the abundant occlusions
and complex interactions among body parts. To this end,
we choose to extract the skeletons S of the people by off-
the-shelf neural networks, and resolve in 3D the occlusive
relationships among the skeletons. After that, we fit a para-
metric human template to each skeleton in S to generate
a multi-person guide model G. Compared with the end-to-
end body regression, explicitly estimating the 3D skeletons
enables an easy incorporation of user corrections for the
depth ordering between skeleton bones. Meanwhile, such
corrections are much more easier to interact and more ac-
curate than segmenting regions and specifying their relative
depth ordering [5], [20].

The guide model G only contains approximate human
shapes which do not tightly match the body profiles in the
image. Therefore, we first extract projected model contours
from G and body contours from I , and then match the two
sets of points uniformly sampled on those contours in the
2D space. Based on the 2D deformation computed from the
non-rigid point matching, we warp the normal map of G
to reconstruct a height field Hb, i.e., the base shape, whose
shape profiles are consistent with the body profiles in I .

Finally, we compute a detailed normal map N g from the
input image, and produce a bas-relief model H through an
optimization that balances the large-scale shape variations
in Hb and the fine-scale geometric details in N g .

Our method is semi-automatic, and it requires minimal
user interaction to help with the occlusion resolution, con-
tour matching, and special region masking when necessary.

4 MULTI-PERSON GUIDE MODEL

Constructing a bas-relief of high fidelity relies on a stable
capturing of the global human structures in the image.
Therefore, we estimate the overall body shape of each per-
son and resolve the spatial relationships among them. The
resultant multi-person model provides a reliable reference
guide for the following base shape generation.

(a) (b)

Fig. 3: Guide Model Generation. (a) The 3D skeleton esti-
mated from the image. (b) The guide model computed by
fitting SMPL to the skeleton.

4.1 Pose and Camera Estimation

To obtain a 3D shape approximation of the human bodies
in the image, we first estimate each person’s skeleton model
Si, i = 1, . . . , N . Considering the robustness and generality
of deep learning methods, we choose OpenPose [33] for 2D
human pose estimation and adopt a lightweight network
[52] to generate the 3D skeletons S from the 2D pose.

The estimated 3D skeletons are represented in their own
coordinate systems. We need to transform them into a uni-
fied camera coordinate system while ensuring the 3D joints
are projected to their 2D counterparts in the image space.
Consequently, we optimize the following energy to obtain
the intrinsic parameters K of a unique pinhole camera and
the similarity transformation Ti of each skeleton Si

E(K,Ti) =
N∑
i=1

∑
v∈Si

‖p− πK(Tiv)‖2 +
N∑
i=1

(tiz − t̄z)2, (2)

where the first term penalizes the re-projection error, and
the second term regularizes the 3D skeletons to have similar
depths. In Equation 2, v is a keypoint of the 3D skeleton and
p is its corresponding 2D keypoint in the image space. The
projection function πK is dependent on the intrinsic matrix
K, in which we assume the focal lengths of two axes are
the same. For the extrinsic matrix T = [sR|t], R is the
rotation matrix, t = [tx, ty, tz]

T is the translation vector,
and s is a scalar value for handling inconsistent scales of
different skeletons. For the regularization, t̄z = 1

N

∑N
i=1 t

i
z

is the mean translation in the z coordinate. The optimization
is nonlinear, in which we set the initial value of focal length
to 500, t to [0, 0, 400]T, and s to 1. These values are chosen
empirically and work well for all our examples in practice.
To prevent the collapse of s and t to infinitesimal values, we
also constrain s to have a lower bound of 0.3.

4.2 Occlusion Resolution

After pose and camera estimation (section 4.1), we obtain
an initial 3D skeleton for each person whose projection
matches its 2D counterpart. However, the spatial relation-
ships among these 3D skeletons are not necessarily correct.
Consequently, the bodies computed by fitting SMPL to these
skeletons (section 4.3) often exhibit occlusions inconsistent
with the given image, either intra or inter bodies (Figure 4b).
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(a) (b) (c)

Fig. 4: Occlusion Resolution. (a) The user interaction of the
depth order, of the red-blue pair, for bone-level occlusion
resolution. (b-c) The generated bodies without and with
occlusion resolution.

(a) no occlusion (b) l1 upon l2 (c) l2 upon l1

Fig. 5: Occlusion relationship between two bone segments.

Thus, we present a semi-automatic method to recover the
correct occlusion relationships before fitting the 3D bodies.

Resolving body occlusions is challenging. As shown in
Figure 4a, the occlusion relationship between two people
is often ambiguous and not a single boolean value, since
the bodies are non-rigid and the mutual interactions are
complex. A key observation is the body parts are precisely
rigid, and the occlusion relationship between two parts is
definite. Therefore, we resolve the occlusions at the bone-
level of 3D skeletons. For two arbitrary bones in S , we check
if their projections in 2D, i.e., two line segments, have an
intersection point (see Figure 5). If they do, the occlusion
relationship has to be explicitly specified by the user. Each
time the system prompts a pair of intersecting segments
on the GUI for resolution, the user can push a button to
switch their depth order (Figure 4a). Such a user-interaction
is converted into a spatial constraint, i.e., there has to be
a signed depth gap between the two specified bones. Our
goal is to adjust the keypoint depth of S to satisfy the user-
provided constraints while preserving the overall shape of
S . Thus, we build a graph structure by taking the keypoints
as nodes and the bones as edges. Then we formulate the
occlusion resolution as a graph Laplacian minimization [53],
[54] subject to a small set of depth constraints

E(z) =
∥∥∥Lz− Lz(0)

∥∥∥2 + ω
∑

f,b∈occpairs
(z̄f − z̄b + dgap)

2
,

(3)
where L is the matrix of graph Laplacian operator, z and z(0)

stack all the z-coordinates of the deformed and undeformed
keypoints, z̄i = (1 − α)zi0 + αzi1 is the z-coordinate of the
intersection point on the i-th bone. We set the weight ω to
0.1 and the depth gap dgap to 15 for compensation of bone
thickness.

As shown in Figure 4c, the bodies computed by fitting

SMPL to the occlusion resolved 3D skeletons have mutual
interactions consistent with the image. With such an ease of
partial order specification on skeleton bones, we let the users
help constrain the occlusions while keeping the interactions
minimal. This is a significant reason we explicitly estimate
the 3D skeletons rather than generate the bodies directly
from the image like the recent end-to-end method [32].

4.3 3D Body Fitting
For each 3D skeleton Si estimated in section 4.1, we generate
a body Gi = bodysmpl(θ∗, β∗) by fitting the SMPL template
[12] to Si

θ∗, β∗ = arg min
θ,β

∑
v∈Si

∥∥∥v − jointsmpl
v (θ, β)

∥∥∥2 , (4)

where v is a keypoint of Si and jointsmpl
v is its correspond-

ing point in the template skeleton, θ and β are the pose
and shape parameters of the template model, respectively.
Figure 3 shows a result of the body fitting.

Since the energy function in Equation 4 is highly nonlin-
ear, we use the estimated skeleton Si to compute θinit, the
initial values of the pose parameters, for better convergence.
Due to the structural difference between Si and the skeleton
of the template, we only constrain the joints that have direct
correspondences.

5 CONTOUR MATCHING

The multi-person guide model G has poses and occlusion
relationships consistent with the input image I . However,
the projection contours of G in the image space are not yet
tightly matched with the body contours in I (Figure 4c).
Though we could further optimize the shape parameters of
the SMPL models to put the contours closer, an exactly tight
match is unreachable due to the existence of clothes and
the reduced space of the SMPL model. Fortunately, our goal
here is to produce a compressed height field with accurate
profiles as the base shape Hb of bas-relief. To produce such
a base shape, we first register the two sets of contours in
the 2D space by computing a non-rigid planar deformation
and then warp the normal map of G based on the computed
planar deformation to generate Hb.

5.1 Contour Extraction
The contours describe depth discontinuities in the image,
which reflect the overall shapes and the spatial relation-
ships between different body parts. However, multi-person
images often exhibit complex intra- and inter-body inter-
actions, making accurate prediction of the segmentation
boundaries a challenging task, even for advanced instance
segmentation methods (e.g., [55]). Furthermore, these meth-
ods can only find the outside boundaries of the silhouettes,
but not the shape edges inside the masks caused by self-
occlusions. To address these issues, we adopt a learning-
based edge detection method [56] to generate a probability
map of contours, which is clipped with a fixed threshold
of 120 to retain the main features (Figure 6a). The nonzero
pixels in this map are candidate contour points. We then
perform the Fisher-Yates shuffle algorithm [57] to sample a
subset of points uniformly from all the candidates as the
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(a) (b) (c) (d)

Fig. 6: Contour Extraction. (a) The probability map of image
contours. (b) The initial centers sampled from the probabil-
ity map. (c) The centers after k-means clustering. (d) The
contour extracted from the guide 3D model.

initial clustering centers (Figure 6b). Next, we perform k-
means on the candidates to distribute the centers evenly
(Figure 6c). Finally, we regard the resultant centers as the
image contour points PI for matching.

For the guide model, we first divide its mesh faces into
front-oriented and back-oriented groups according to their
normals in the camera coordinate system. Next, we locate
the vertices on the common boundary of the two groups
and take their projections in 2D as the model contour points
PG for matching (Figure 6d). For all our examples, we
empirically constrain |PI | = 1.2 |PG | to ensure a sufficient
number of image points for matching.

5.2 Non-rigid Point Matching

Given the point sets PI and PG , our goal is to find the
optimal correspondences Z between them and the non-rigid
planar transformation f represented as a warping function
that aligns them in 2D. We conduct the simultaneous mini-
mization

min
Z,f

N∑
i=1

K∑
j=1

Zij ‖yj − f(xi)‖2 + λ ‖L(f)‖2 − ξ
N∑
i=1

K∑
j=1

Zij

(5)
subject to Zij ∈ {0, 1},

∑K+1
j=1 Zij = 1, and

∑N+1
i=1 Zij = 1.

Here we have N = |PG | ,K = |PI | and xi ∈ PG ,yj ∈
PI . The first term measures the approximation fidelity, the
second term represents a constraint on the smoothness of f ,
and the third term penalized the number of outliers. Figure 7
shows an example of the non-rigid matching formulation.

In practice, we adopt the TPS-RPM [58] to process Equa-
tion 5. The method parameterizes the non-rigid transforma-
tion f and the smoothness measure L as the thin-plate spline
formulation [59] and uses softassign [60] to relax the binary
correspondence Z. The variables f and Z are alternatively
optimized via an annealing schedule. We set the weight λ
to be linearly dependent on the temperature for annealing,

(a) initial state (b) optimal Z (c) registration

Fig. 7: Non-rigid Registration Example. (a) The initial states
of the source points (red) and the target points (blue), and
the optimal correspondences (black lines) between them. (b)
The matrix for the optimal correspondences. The last row
and column are extra markings for outliers (no correspon-
dences). (c) The result of applying the optimal non-rigid
transformation f .

(a) (b) (c) (d)

Fig. 8: Non-rigid Contour Matching. (a) The initial state of
the model contour (red) and the image contour (blue). (b-c)
The contour matching result without and with user speci-
fied point pairs. (d) The user selection of the correspondent
points (black) in the GUI.

and set the weight ξ to 1e-2 for tolerating a large number of
outliers. See the supplemental for more details.

The fully-automatic optimization cannot ensure a perfect
matching due to the complexity of body parts and the
existence of outliers. Once again, we leverage user interac-
tions to guide the optimization process. Interacting with the
transform function f is impractical. Thus we let the users
pick several pairs of correspondent points. Each point pair
specified by the user is converted to a hard constraint for Z.
For a specified point pair (i, j), we fix Zij to 1 and all the
other entries in the i-th row and j-th column to 0. We found
such interactions convenient, and on average, 4 such point
pairs are sufficient for a tight contour alignment. Figure 8
shows an interaction example.

6 SHAPE INTEGRATION

6.1 Base Shape

Given the multi-person guide model G (section 4) and the
non-rigid transformation ftps (section 5), we generate the
base shape Hb, which is a height field accurate in overall
layout but without fine-scale details.

To achieve this, we first render a normal map (Figure 9b)
of G and then warp it by ftps to obtain the base normal map
N b (Figure 9c). After that, we generate the base shape Hb
(Figure 9d) from N b by using the modeling method of Ji et
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(a) (b) (c) (d) (e) (f)

Fig. 9: Base Shape Generation. (a) The guide model. (b) The
normal map rendered from the guide model. (c) The normal
map warped by the non-rigid transformation. (d) The base
shape reconstructed from the warped normal map. (e) The
special processing of head, hairs, hands, and feet. (f) The full
base shape.

al. [16], which minimizes the squared difference between the
Laplacian of Hb and N b with intuitive height control.

Since the head of the SMPL model lacks facial charac-
teristics and the hands and feet are hard to fit robustly, in
practice, we render N b without these parts. For the head,
we instead extract facial landmarks from the image [61] and
fit them with a 3D facial expression model [62] to obtain a
high-quality head (Figure 9e) tightly aligned with the image.
Then we render the head’s depth map and convert it to a
height map, which is superimposed onto the base shape Hb
to update it. For the hairs, hands, and feet, we first let the
users paint a small set of strokes in the image to mask out
these regions [63]. Then we smooth the mask to estimate the
gradients on its boundary. Next, we use the gradients as the
boundary conditions for solving a Laplacian problem to get
an approximate height field (Figure 9e). Finally, we update
Hb by composing the height field with Possion Editing [64]
(Figure 9f). See the supplemental for more details.

6.2 Fine-scale Normal Map
The base shape misses fine-grained geometric details from
the input image such as the wrinkles of the clothes and the
faces. To enhance these features, we compute a deceptive
but robust normal map to approximate the fine-scale de-
tails. We design a multi-level extension to the method in
[16]. First, we convert the input image I to a grayscale
image Igray and filter it with Gaussian kernels of different
sizes. Then we extract the per-pixel normals nk(u, v) =
normalize

(
[−∇Ikgray(u, v), 1]T

)
at each level k. Finally, the

normals at different levels are averaged to obtain the fine-
scale normal map N g . We found such a method is more
robust on a single image than photometric stereo methods
like the shape-from-shading. We show a comparison with
an SFS-based method and an intrinsic image optimization
method in Figure 15.

6.3 Shape Sharpening
To produce the final bas-relief, we employ the method of
Nehab et al. [11] with orthographic projection to compose

(a) (b) (c) (d)

Fig. 10: Shape Integration. (a) The input image. (b) The base
shape. (c) The fine-scale normal map. (d) The final bas-relief.

the overall shape Hb and the fine-scale details N g together
by a least-squares optimization

E(H) = α
∑
i

(Hi−Hbi )2+(1−α)
[
(Tui · N

g
i )2 + (T vi · N

g
i )2
]
,

(6)
where i is the pixel index, and Tu and T v are linearly con-
structed fromH representing two tangents to the optimized
surface. We set α to 0.1 for the body region and 0.4 for
the head region. To discard the background information in
N g , we use the non-zero heights in Hb as a binary mask.
Figure 10 shows an example of shape integration. We refer
to the supplemental for more details.

7 EXPERIMENTAL RESULTS

7.1 Hardware and Software

We build our system on a desktop PC with an Intel Core i5-
4590 CPU, an NVIDIA GTX 1080Ti GPU, and 32G memory.
We implement the numerical computations with Eigen [65]
and Ceres Solver [66], the image processing with OpenCV
[67], and the GUI with Qt. For the experiments, we down-
sample each photo to have a height of 1000 pixels, which
achieves a balance between the runtime efficiency and the
quality of details.

7.2 Evaluation and Comparison

To show the efficacy and robustness of our bas-relief gen-
eration method, we apply our approach to a variety of
group photos with diverse body postures, ages, and genders
(Figure 11, the 2nd row). The results demonstrate that the
method generates faithful shapes recovering correct occlu-
sions between limbs and trunks, and also produces the fine
details of bodies and clothes.

The final bas-relief is essentially a continuous and com-
pressed depth-field. Therefore we compare our method
with state-of-the-art human depth estimation methods on
single images (Figure 11, rows 3 to 5). All the methods are
based on neural networks and fully automatic. In particular,
the method of Li et al. [46] produces reasonable depth-
orderings and partially captures large-scale body profiles
in the depth map, but the shapes are rough and flat, where
the salient shading effects and fine-scale features are lost.
The method of Tang et al. [10] cannot handle multi-person
images, on which the method produces incomplete predica-
tions and confuses body parts belonging to different people.
For single-person images, the output is rather coarse, and
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Fig. 11: Comparison to NN-based Depth Estimation. From top to bottom: the input images, the bas-reliefs produced by
our method, the depth estimation results of Li et al. [46], the depth estimation results of Tang et al. [10], and the full body
reconstruction results of PIFuHD [51].

the mask prediction is inaccurate. To be rigorous, PIFuHD
[51] is not a depth estimation method but for full-body
reconstruction. When looking at the front view, it produces
high-quality shapes with abundant fine details, at least for
single-person input. The method does not directly support
multi-person images, where body parts are often missed.
The results also exhibit depth artifacts and fine-scale noise
(see the supplemental). In contrast, our method produces an
intact and detailed bas-relief of all the subjects and succeeds
in resolving the complex body interactions with minimal
user interventions. To evaluate the qualities of the results,
we recruit 134 volunteers for the user study. Specifically, for
each image, we show them the results of the four methods
in random order and ask them to select the one that looks
most similar to the input or choose none. Figure 12 shows
that, on average, our method obtains 63% of the votes, a
significant preference over the alternatives, while the second
one PIFuHD gets 23%. Note that to be fair, we only show

the front view of the results to minimize the interference of
depth artifacts of PIFuHD.

The base shape Hb is fundamental to the quality of the
produced bas-relief. To demonstrate its efficacy, we conduct
a naive estimation of the base shape and use it to generate
the bas-relief according to Equation 6. Precisely, we first
manually mask the person in the input image. Then we
smooth the mask and estimate approximate gradients at the
boundary. Finally, we solve a Laplacian problem by taking
the gradients as boundary conditions to produce a naive
base shape and add details onto it. Figure 13 shows that the
bas-reliefs constructed from naive base shapes are rather
flat and lose important depth clues between interacting
body parts. In contrast, our results embody genuine depth
relationships and realistic 3D-perceptions.

To generate the multi-person guide model G, we choose
to estimate skeletons as intermediates and fit the SMPL tem-
plate to them. There could be alternatives for this step. We
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0 10 20 30 40 50 60 70
The Percentage of User Votes (%)

Our Method

PIFuHD [49]

Tang et al . [10]

Li et al . [46]

None of Them

Which one is most similar to the given image?

Fig. 12: The user study shows that our results obtain signifi-
cant preference over alternative ones. The error bar indicates
the standard deviation of the per-image vote percentages.

Fig. 13: Comparison to Alternative Base Shapes. The bas-
reliefs constructed from our full base shape (top row) and
the naive base shape (bottom row). We show both the front
views and 45-degree side views of the results.

thus compare our strategy with the latest NN-based body
reconstruction methods [29], [32], [41]. Figure 14 shows that
we achieve similar fitting qualities like them in the case
of single-person input. However, they do not work well
on multi-person input and produce the wrong number of
bodies. The method of Kanazawa et al. [29] always outputs
one regardless of how many people appear. The method of
Guler et al. [32] produces all the appeared bodies only in
some cases, e.g., only one is obtained while there are two
(2nd row). The method of Jiang et al. [41] tends to generate
more bodies than exists, e.g., three bodies are predicted but
only two in the image (2nd row). Moreover, the occlusion
relationships produced by these methods are often wrong,
e.g., the 3rd row. Although the method explicitly deals with
occlusions in the training loss, it still fails on family pho-
tos manifesting intertwined body parts rather than holistic
body orderings. In contrast, our method generates all the
appeared bodies and resolves all the wrong occlusions with
3D skeletons at part-level.

To produce the final bas-relief model, we integrate an
overall base shape with a fine-scale normal map to enhance
the details. Shape-from-Shading based methods are often
adopted to extract geometric details from the input image
of objects like the human face [7]. However, in our case the

Fig. 14: Comparison of Guide Models. From left to right:
the input image, our guide models, the result of Kanazawa
et al. [29], the result of Guler et al. [32], and the result of
Jiang et al. [41]. Note that the correct occlusion resolution,
rather than tight image alignment, is the key to success for
the guide models. We ensure the latter by contour matching.

wide variety of materials and textures of faces, hairs and
clothes breaks the basic assumptions, e.g., the spatially in-
variant reflectance and constant albedo, of SFS-based meth-
ods. Compared with our normal estimation (Figure 15b),
the SFS-based method [68], even with an adaptive albedo
model [9], generates unreliable normal maps (Figure 15c,d).
Unlike the SFS-based method, intrinsic image optimization
jointly recovers the shape, illumination, and reflectance. We
compare our method with a data-driven method, SIRFS [69].
Though the normals produced are visually more plausible
(Figure 15e) than the SFS-based method, the result is still
spatially inaccurate and misses fine-scale details, which our
normal estimation can robustly approximate. Note that we
use the image pixels of the facial skin to estimate a lighting
model (Figure 15a) for both [68] and [69].

7.3 User interaction
We carefully design our pipeline and algorithms to mini-
mize the user-interaction, such that it is affordable by an
average user. Our system requires the user to specify the
occlusion relationships of the intersecting skeleton bones,
pick key point pairs in contours for non-rigid registration,
and paint strokes for segmentation of the hairs, hands, and
feet when they are visible. Table 1 collects the number of
interactions for the examples shown in Figure 11. For the
interaction time of these examples, on average, we take less
than 2 minutes for point pair selections, 1 minute for bone
occlusions, and 1 minute for region segmentations. For the
most complex one, it takes about 8 minutes in total.

7.4 Running Time
For all the examples shown in Figure 11, the total compu-
tation time without taking account of the user interactions
is less than 4 minutes. The most time-consuming step is the
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(a) (b) (c) (d) (e)

Fig. 15: Comparison to Shape-from-Shading methods. (a)
The input image. (b) The fine-scale normal map from our
method. (c) The fine-scale normal map from an SFS-based
method [68]. Their method assumes the model has constant
albedo, which does not hold for human bodies with tex-
tured clothes, shoes, and hairs, leading to incorrect normal
estimations. (d) The fine-scale normal map from [68] with
an adaptive albedo model [9]. (e) The fine-scale normal map
from SIRFS [69].

TABLE 1: Statistics of the user interactions for specifying the
order of intersecting bones, the matched contour point pairs,
and the painting strokes for masks of hands/feet/hairs.

ID in Figure 11
(left to right) 1 2 3 4 5 6 7 8 9 10

#Bone Pairs 3 11 10 10 14 5 0 0 2 0

#Point Pairs 2 3 8 7 6 3 2 4 6 3

#Paint Strokes 3 2 12 8 10 3 5 4 4 4

generation of the multi-person guide model, which takes
about 2 minutes for the most complex example (the one
with four people). The contour matching takes less than 20
seconds, and the shape integration takes about 1.5 minutes.

8 CONCLUSION, LIMITATION AND FUTURE WORK

We have introduced an easy-to-use semi-automatic pipeline
for human bas-relief generation from a single photograph.
It produces a high-fidelity height field of the human bod-
ies with an accurate spatial layout and realistic fine-scale
details. The skeletons-based occlusion resolution and non-
rigid contours registration, together with the reliable user-
interactions, ensure the robust inference and extraction of
global shape and structure information from the input im-
age.

Our method has a few limitations. The computation of
fine-scale normal map is prone to inaccurate results under
strong global-illumination effects like shadows and reflec-
tions. For complex texture, the color variation is converted
to the high-frequency change of the height field (Figure 16),
and whether it is a desired feature or not depends on the
user. Loose-fitting clothing like the skirt is challenging for
base shape generation due to the vast difference in shape
contours, even with the non-rigid registration method (see
the white frame in Figure 16d).

(a) (b) (c) (d)

Fig. 16: Bas-relief for a loose cloth with strong texture.

We design the current pipeline to keep it lightweight and
away from the necessity of expensive multi-person training
data. Learning-based methods and data-driven priors have
the potential to promote the automation level of base shape
generation. Given sufficient training data paired with 3D
ground-truth and explicit occlusion models like [70], it is
promising to enable the non-template depth estimation net-
works to resolve the partial-orderings of occlusion regions
in multi-person images. Building accurate and dense image-
to-surface correspondences [43] has the potential to further
decrease the manual efforts for contours matching. An en-
hanced template fitting method [71] can also help remove
the segmentation needs for particular regions like the hands.
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1 Robust Contour Points Matching

1.1 Solving the tps transform with a known correspondence

Given two 2d point sets {xi} and {yi} of size N with one-to-one correspondence, we find a transform function f by
minimizing:

Egeneral( f ) =
K
∑

i=1

(yi − f (xi))
2 +λJ ( f ), (1)

where the second term controls the smoothness of the transform.
A tps function can be represented as two matrices d and c:

ftps(x) = x · d+φ(x) · c, (2)

where x is the homogeneous coordinates of an arbitrary point in the space of xi , d is a 3× 3 matrix for the global
affine transform and c is a N × 3 matrix for the local non-rigid transform. The kernel function φ(x) a 1×N vector
for each point x, where φi(x) = ‖x− xi‖2log‖x− xi‖.

By substituting ftps into Equation 1, Egeneral can be written as:

Etps(d,c) = ‖Y− (Xd+Φc)‖2 +λtrace(cTΦc), (3)

where X, Y and Φ are the stack version of x, y and φ(x), and the entry in Φ is Φi j = ‖xi − x j‖
2log‖xi − x j‖.

A good way to minimize Etps (Equation 3) is to solve the following equations [1]:
§

Pc+Xd= Y (4a)

XT c= 0 (4b)

in which P= Φ+λI. By performing Qr decomposition of X, we can compute c and d as follows [1]:

X= (Q1 : Q2)
�

R
0

�

(5)

�

c= Q2(Q
T
2 PQ2)

−1QT
2 Y (6a)

d= R−1QT
1 (Y− Tc) (6b)

1.2 Solving the tps transform and the unknown correspondence

Now, we have two sets {xi} and {yi}, but their correspondence is unknown. If we want to find a transform f , we
have to incorporate an additional robustness-term of the correspondence Z into the following minimization

min
Z, f

N
∑

i=1

K
∑

j=1

Zi j





y j − f (xi)






2
+λ‖L( f )‖2 − ξ

N
∑

i=1

K
∑

j=1

Zi j , (7)

subject to Zi j ∈ {0,1},
∑K+1

j=1 Zi j = 1, and
∑N+1

i=1 Zi j = 1. Here we have N =
�

�PG
�

� , K = |PI | and xi ∈ PG ,y j ∈ PI .
The first term represents the approximation fidelity, the second term represents a constraint on the smoothness of
f , and the third term penalized the number of outliers.
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It is natural to minimize Equation 7 alternatively on f and Z.
When only considering Z, we minimize

E(Z) =
N
∑

i=1

K
∑

j=1

Zi j Di j , (8)

where Di j = ξ− ‖y j − f (xi)‖2.
When only considering f , similar to subsection 1.1, we have following equations:

�

P̂c+Xd= Ŷ (9a)

XT c= 0 (9b)

in which



















































P̂= Φ+λW−1 (10a)

W= diag(w2
1, ..., w2

n) (10b)

wi = 1/
K
∑

j=1

Zi j , i = 1, ..., N (10c)

Ŷ= (ŷT
1 , ..., ŷT

n ) (10d)

ŷi =
K
∑

j=1

Zi jy j/

K
∑

j=1

Zi j , i = 1, ..., N (10e)

To avoid the space-jumping in Z, we adopt the TPS-RPM [2] to process Equation 7. In Algorithm 1, the
temperature T is for relaxing the binary correspondence matrix Z to the doubly stochastic matrix M. The variables
f and M are alternatively optimized via an annealing schedule.

Algorithm 1 TPS-RPM

Require: T0 initial temperature,T1 final temperature,r attenuation rate
1: T ← T0
2: while T > T1 do . Deterministic annealing
3: β ← 1

T
4: M̂0

i j ← exp(βDi j)

5: while M̂ not converges do . Sinkhorn method
6: M̂1

i j ← M̂0
i j/
∑K+1

k=1 M̂0
ik, i = 1, ..., N . Nomalize rows

7: M̂0
i j ← M̂1

i j/
∑N+1

k=1 M̂1
k j , j = 1, ..., K . Nomalize cols

8: end while
9: M← M̂0

10: c← Q2(QT
2 P̂Q2)−1QT

2 Ŷ
11: d← R−1QT

1 (Ŷ− Tc)
12: T ← rT
13: end while

2 The Algorithms Used in Section 6.1

See Algorithm 3 for the overall pipeline of base shape generation, Algorithm 3 for the warping of base normal
map, and Algorithm 4 for the normal map construction from the segmentation mask, i.e., the inflation process.
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Algorithm 2 Base Shape Generation

1: Warp normal map rendered from the guide model
2: Generate height field of body region from the warped normal map
3: Fit a 3D face model to the detected facial landmarks
4: Generate height field of the face region
5: Compute normal maps of user-masked regions
6: Generate height field from the normal maps
7: Compose these height fields with Poisson Editing

Algorithm 3 Normal Map Warping

1: function WARPNORMALMAP(normalMap[ ][ ], ftps)
2: Initialize warpedNormalMap[ ][ ] with (0, 0,0)
3: for each point pd in warpedNormalMap do
4: p← ftps(pd)
5: if p is valid in normalMap then
6: warpedNormalMap(pd)← BilinearInterpolateNormal(normalMap[ ][ ],p)
7: end if
8: end for
9: return warpedNormalMap

10: end function
11:

12: function BILINEARINTERPOLATENORMAL(normalMap[ ][ ], p)
13: x ← px , y ← py
14: x1← floor(x), x2← ceil(x), y1← floor(y), y2← ceil(y)
15: q11← (x1, y1), q12← (x1, y2), q21← (x2, y1), q22← (x2, y2)
16: n11← normalMap(q11), n12← normalMap(q12)
17: n21← normalMap(q21), n22← normalMap(q22)

18: n←
�

x2 − x x − x1

�

�

n11 n12
n21 n22

��

y2 − y
y − y1

�

19: if ‖n‖ 6= 0 then
20: n← n/‖n‖
21: end if
22: return n
23: end function

Algorithm 4 Normal Map from Mask

1: Apply Gaussian filter to mask m (with a nonzero region Ω) to obtain s
2: Compute the gradient of s as g
3: Compute nx and ny by solving the Laplace’s equation with the boundary condition n(p) = g(p),∀p ∈ ∂Ω
4: for each point (u, v) in Ω do
5: x ← nx(u, v), y ← ny(u, v)
6: n← [x , y, 1]T

7: n← n/‖n‖
8: n(u, v)← n
9: end for

10: Return the normal map n
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3 Integration

Slightly different from the original method [3], we conduct the computations with orthogonal projection since
the perspective effect is weak in our scenario. Then for each 2D point p= [u, v]T , the relation between the 3D
coordinate V(p) and the captured height map h(p) is:

V(p) = [u, v, h(p)]T

Under this assumption, the tangent vectors at each point can be computed as

Tu(p) =
∂ V(p)
∂ u

=
�

1,0,
∂ h(p)
∂ u

�T

Tv(p) =
∂ V(p)
∂ v

=
�

0,1,
∂ h(p)
∂ v

�T

which lead to a simpler linear system to solve.

4 More comparisons with PIFuHD [4]

The method presented in PIFuHD [4] does not directly support multi-person images, where body parts are often
missed. The results also exhibit depth artifacts and fine-scale noise (see Figure 1).

Figure 1: The side views of full-body reconstruction results of PIFuHD [4]. The corresponding frontal views are
shown in the 3rd, 5th, 8th, and 9th columns of Figure 11 in the paper. The insets show the side views of our
bas-reliefs for reference.
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