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Shape Adaptation for 3D Hairstyle Retargeting
Lu Yu, Zhong Ren, Youyi Zheng, Xiang Chen*, and Kun Zhou, Fellow, IEEE

Abstract—It is demanding to author an existing hairstyle for novel characters in games and VR applications. However, it is a non-trivial
task for artists due to the complicated hair geometries and spatial interactions to preserve. In this paper, we present an automatic
shape adaptation method to retarget 3D hairstyles. We formulate the adaptation process as a constrained optimization problem, where
all the shape properties and spatial relationships are converted into individual objectives and constraints. To make such an optimization
on high-resolution hairstyles tractable, we adopt a multi-scale strategy to compute the target positions of the hair strands in a
coarse-to-fine manner. The global solving for the inter-strands coupling is restricted to the coarse level, and the solving for fine details
is made local and parallel. In addition, we present a novel hairline edit tool to allow for user customization during retargeting. We
achieve it by solving physics-based deformations of an embedded membrane to redistribute the hair roots with minimal distortion. We
demonstrate the efficacy of our method through quantitative and qualitative experiments on various hairstyles and characters.

Index Terms—3D hairstyle retargeting, shape adaptation, multi-scale solving, embedded membrane, constrained optimization.
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1 INTRODUCTION

3D HAIRSTYLE is an essential asset for digital characters. In
games and VR applications, it is often demanding to author
an existing hairstyle for a novel character since the creation
of high-quality 3D hairstyles requires laborious effort and
expertise [1], [2], [3]. However, manual retargeting is a non-
trivial task as a 3D hairstyle exhibits complicated geometries
and spatial interactions, and the artist must ensure a faithful
preservation of all these details during authoring (see Figure
2 b-c).

In this paper, we present an automatic shape adaptation
method for 3D hairstyle retargeting. Given the hairstyle of a
source character, our method can adapt it to diverse targets
with distinct body shapes (see Figure 1). Although there are
2D hairstyle transfer methods like [4], [5], [6] investigated
with the recent progress of StyleGAN [7], [8], the pixel-level
manipulations cannot be applied to 3D hairstyles. As a 3D
hairstyle possesses various per-strand shapes, complicated
inter-strand relationships, and complex interactions with the
character, a key challenge is how to preserve such geometric
information in accordance with the shape variance between
the source and target characters. Therefore, we formulate the
adaptation process as a constrained optimization, where all
the shape properties and spatial relationships are converted
into individual objectives and constraints.

Shape adaptation can be computationally intractable for
3D hairstyles. In order to express sufficient fine details, a 3D
hairstyle often possesses hundreds of thousands of strands
and millions of particles. With such a high-resolution model,
the global coupling between all hair strands leads to a huge
system to solve. To tackle this problem, we present a multi-
scale solving strategy to organize the hair strands into two
levels of detail and restrict global solving to the coarse level.
With the coarse adaptation ready, solving the fine details is
made local and parallel.

We further allow the users to customize the position and
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Fig. 1: Retargeting a 3D hairstyle to different characters.

shape of the hairline to obtain more variants. A critical step
to support hairline edits is redistributing the hair roots by
stretching a scalp membrane embedded in the head surface.
To minimize the distortion of such a redistribution, we resort
to a physics-based formulation, i.e., optimizing an elasticity
energy parameterized intrinsically in the surface space.

We conduct experiments on various hairstyles and char-
acters. The qualitative and quantitative results demonstrate
the fidelity and diversity of our retargeting method. Further-
more, various hairline edits from users are supported, and
the multi-scale solving achieves a two-orders-of-magnitude
speedup, compared with the full solving of all strands.

Our main contributions are:

• The first shape adaptation framework based on con-
strained optimization for 3D hairstyle retargeting;

• A multi-scale solving method to enable the optimiza-
tion of high-resolution hairstyles;

• A physics-based embedded membrane deformation
method to support hairline edits.

2 RELATED WORK

2.1 3D Hair Modeling
With the increasing demand for realistic hairstyles in digital
humans, 3D hair modeling techniques have been continu-
ously improved [9], [10]. High-quality reconstruction of 3D



2

hairstyles often requires a complex acquisition setup, e.g.,
the LED light sources, robotic arms, SLR camera arrays [1],
[2], or even computed-tomography scanners [3]. The ob-
tained hairstyles are of satisfying fidelity, but the expensive
equipment or long capturing time restricts the acquisition
scalability. Recently, data-driven and deep learning methods
are adopted to generate 3D hairstyles from single-view [11],
[12], [13], [14] or multi-view images [15], [16], and the depth
information is also used [17], [18]. These image-based meth-
ods are straightforward to scale up. However, the produced
3D hairstyles cannot yet be compared with the acquisition
results in terms of precision and quality, mainly due to the
limited 3D hair models for training and the inherent domain
gap between the real images and the synthetic ones.

Generative models for 3D hairstyles have been recently
developed. The variational autoencoder is often employed
to learn the representation model for individual strands and
hairstyles. Hairstyle variants can be efficiently synthesized
through a latent-space sampling or interpolation [19]. Text
conditioning to a diffusion network is also enabled to help
guide the hairstyle generation [20]. These works conduct the
training on a canonical head shape that would be implicitly
embedded within the network, and the synthesis is bound to
this shape inherently. Our method complements them since
we can effectively retarget the ones they produce to novel
characters, vastly increasing the variants.

2.2 2D Hairstyle Transfer
Given the data scarcity of high-quality 3D hairstyles, reusing
existing models has practical significance. Specifically, meth-
ods are investigated for hairstyle transfer in the image space
[4], [5], [6], [21]. MichiGAN [4] designs individual condition
modules to compose the shape, structure, appearance, and
background attributes of different source images into a new
one. Differently, LOHO [21] optimizes the latent space of
StyleGAN2 [8] with a gradient orthogonalization strategy
to disentangle the hair attributes. Based on the latent space
of StyleGAN2, Barbershop [5] enhances its spatial encoding
with a novel structure tensor and adopts a semantic align-
ment step to improve the blending coherence. StyleYourHair
[6] employs facial-keypoints detection and a dedicated local-
style-matching loss to deal with the pose difference between
the reference images. Those methods do not apply directly
to 3D hairstyle transfer. First, the latent-space hair manipu-
lation depends on an underlying representation model. This
necessitates a large training set that is publicly available to
facial images but not 3D hair models. Second, 2D hairstyle
transfer focuses on the visual plausibility of the pixel-space
compositions under a given viewpoint, while a 3D method
explicitly adapts the hair geometries. During the adaptation,
we must ensure the full fidelity of hair shapes and preserve
their spatial interactions with the characters. Moreover, our
method does not rely on any 3D hair dataset. In fact, it could
be leveraged to vary existing models for data augmentation.

2.3 3D Garment Retargeting
Although there has yet to be direct research on 3D hairstyle
transfer, to the best of our knowledge, a few methods have
been developed for resizing the garments to fit a target body.
Earlier methods adopt skinning-type strategies to warp the

garment surface mesh along with the character body [22],
[23], [24]. The warping result is tightly bound to the shape
variance of the body mesh, leading to undesirable artifacts
for loose garments. Then, Meng et al. [25] propose manually
adding user guidances to regularize the garment shape, but
merely using the annotations on sparse views is insufficient
to eliminate all the shape artifacts. Brouet et al. [26] presents
a gradient-based objective and an operation for deformation
projection to explicitly preserve the shape properties during
garment transfer. The techniques from these methods could
be borrowed to solve transfer problems for other assets. For
example, most of them have defined the spatial relationship
between the garment and body, though using diverse ways,
and we modify the skeleton-based local positioning strategy
presented in [26] to express the hair-body relationship. The
methods are not fully applicable to hairstyle transfer due to
the significant differences between the geometric represen-
tations of hairstyle and garment. The garment is modeled
as a set of connected 2D surface meshes, while the hairstyle
is composed of many individual 1D strands, all embedded
in the 3D space. In this work, we design dedicated energies
to model per-strand shapes and inter-strand interactions for
hairstyle retargeting. Furthermore, we present a multi-scale
solving strategy to deal with the high-resolution nature of
hair models in a coarse-to-fine manner, as well as a hair-root
relocation algorithm to support the user edits of hairline.

Recently, data-driven and learning-based methods have
been utilized to retarget the pattern-based garment designs
[27], cloth dynamics [28], [29] and wrinkles [30], [31]. These
methods often require a training dataset with paired combi-
nations of garment samples over body samples. Our method
can be an optional tool to create such a dataset for hair.

3 OVERVIEW

We aim to retarget strand-based 3D hairstyles. Specifically,
given two characters with similar poses, our method takes
an arbitrary hairstyle customized for the source and adapts
its shape to the target. The produced hairstyle preserves a
consistent look with the original hair while being compati-
ble with the target character.

Due to the inherent shape differences between the source
and the target character, naively transferred hairstyles often
possess one or many of the following issues.

The single-strand shape is visually crucial to 3D hairstyles.
Without any constraints for it, a position-based optimization
on the strand particles would easily damage the per-strand
shape properties, e.g., curliness.

The inter-strand relationship represents the spatial interac-
tions between different strands in a hairstyle. Hair strands
are topologically independent, but their relative locations in
3D are visually salient. Thus, processing each strand without
any mutual constraints would quickly lose this global shape
information (see insets of Figure 2c).

The hair-body relationship describes the relative positions
between the hair strands and the character model, especially
the head, neck, shoulder, and upper arms. Such spatial rela-
tionships could be inherently semantic, e.g., a side fringe be-
side the cheek. To faithfully capture these abundant mutual
semantics, solely considering the hair-roots positioning on
the scalp during transfer is far from satisfactory (Figure 2b).
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Fig. 2: (a) The source character and hairstyle. (b) A naive retargeting, using either a global translation (up) or per-strand
translations based on the barycentric coordinates of hair roots on the scalp (bottom), produces wrong proportions between
the hair and the character. (c) With a global affine transformation and per-strand translations, the large-scale proportion
improves. However, the retargeted hairstyle still has the wrong hair-body relationship (e.g., see the arrows: the tight
attaching and interpenetration artifacts between the side fringes and the cheek) and inter-strand relationship (e.g., see the
zoom-ins: the hallucinated and exaggerated bundle concentrations). (d) Our method produces a faithful retargeting result
exhibiting, e.g., side fringes with reasonable gaps to the cheek and bundles with accurate, fluffy shapes.

Things get even worse when the transferred hairs penetrate
the body, which leads to severe artifacts (Figure 2c).

The above shape factors could conflict; for example, strict
preservation of the hair-body relationships could harm the
single-strand shapes. Thus, the retargeting method should
sensibly balance those factors and produce a hairstyle that is
visually faithful to the source models and spatially adaptive
to the target character, e.g., penetration-free. Meanwhile, the
method must be fast to compute and flexible for user edits.

To this end, we carefully design a two-stage method for
3D hairstyle retargeting (Section 4). First, we compute an
initial hairstyle that preserves the hair-body relationship as
much as possible but ignores all the other shape factors.
Second, starting from the initial transfer result, we simulta-
neously optimize all the mentioned shape factors by solving
an iterative quadratic programming problem to obtain the
final hairstyle.

To accelerate the optimization, we build a hair hierarchy
to decouple the inter-strand relationships, enabling approxi-
mate but efficient multi-scale solving (Section 5). To support
user edits of the hairline, we present a physics-based embed-
ded membrane deformation to redistribute the hair roots on
the target scalp with minimal distortion (Section 6).

4 3D HAIRSTYLE RETARGETING

We represent a 3D hairstyle as independent strands, where
each strand is composed of sequentially connected particles.
We stack per-particle 3D positions of the original and the
transformed hairstyle to vectors p̄,p ∈ R3×N , where N
is the total number of particles. We denote the source and
target character mesh by Ms and Mt, and their 3D positions
by q̄ and q, respectively. Moreover, we assume that Ms and
Mt have the same topology.

For the 3D hairstyle retargeting, we seek to find a good
p given p̄, q̄ and q. Mathematically, we formulate this shape
adaptation as a constrained nonlinear optimization problem.

min
p

Estrand-shape + αEinter-strand + βEhair-body

s.t. Croot, Cpenetration

(1)

4.1 Initial Transfer
The nonlinear optimization necessitates an initial value of p.
In order to stabilize and accelerate the convergence, a good

initial hairstyle should possess a smooth shape and correct
proportions. Thus, we compute such a value by conforming
to the source hair-body relationship.

We first generate the source and target skeleton Ks and
Kt, with the same topology, by fitting the SMPL [32] to the
character models Ms and Mt, respectively.

Next, we adapt the cloth positioning strategy [26] to
localize hairs. For each particle p̄i of the source hairstyle, we
choose a bone from Ks as the anchor for local positioning:

min
b∈bones

1qb∈Λb
· ∥p̄i − q̄b∥ · eσ⟨r̄b,v̄b⟩2 . (2)

As shown in Figure 3a, on each bone we find the point ōb

that is closest to p̄i, and we find the intersection between
the ray #       »

ōb p̄i and the source character Ms as the point q̄b. In
the above exponentiation, r̄b = q̄b−ōb

∥q̄b−ōb∥ is the direction of
the ray, v̄b is the direction of the bone, and σ is a constant
that we set to 100. In other words, we tend to choose a bone
orthogonal to the ray with an intersection point near the hair
particle. As this simple metric [26] may choose a faraway
bone with false intersection, e.g., a ray starting from clavicle
intersects the scalp, we add an indicator function 1q̄b∈Λb

to
ensure that the intersection point is within a valid surface
region. We clip the skinning weights of SMPL for bone b to
determine this valid region Λb.

For each p̄i, we record the length η̄i = ∥p̄i − q̄b∥ as the
local coordinates. We also use the barycentric coordinates of
q̄b and ōb to find the reference points qb and ob on target
models Kt and Mt. By applying the local coordinates to the
reference points, we obtain the target position of particle p̄i:

p̃i = qb + η̄i ·
qb − ob

∥qb − ob∥
. (3)

The position p̃i is a local retargeting due to its individual
computation on each particle. This leads to stairstep strands,
which hinders the optimization in Equation 1. Therefore, we
smooth each strand by solving a discrete Poisson’s equation
for p̂ with the Dirichlet boundary condition:

Li[p̂] = Li[p̄], ∀i ∈ Iu
s.t. p̂j = p̃j , ∀j ∈ I − Iu,

(4)

where L[∗] is a discrete Laplace operator defined on p̄:

Li[f ] =
fi+1 − fi

∥p̄i+1 − p̄i∥
− fi − fi−1

∥p̄i − p̄i−1∥
, (5)
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and Iu is the index set of the particles with large Laplacian
feature discrepancies from the source:

Iu = { i | ∥Li[p̃]− Li[p̄]∥2 > ϵs }. (6)

4.2 Single-Strand Shape

In Equation 1, the first energy term measures how large the
strand shapes change during retargeting. At first glance, it is
appealing to define the local shape change as the variation of
individual strand segments, where each segment connects
two adjacent particles in a strand. However, the retargeting
often necessitates a proportion change due to the significant
shape difference between the source and target character. To
this end, we allow a segment to change length but penalize
its change in direction:

Estrand-shape =
∑

a,b∈segments

∥∥∥∥ pa − pb

∥pa − pb∥2
− p̄a − p̄b

∥p̄a − p̄b∥2

∥∥∥∥2
2

.

(7)

4.3 Inter-Strand Relationship

The second energy term in Equation 1 measures the change
of spatial relationships between different strands. For each
hair particle in the source hairstyle, we find the k particles
nearest to it in different strands and then build a distance-
weighted Laplacian feature to encode the relative positions
between them (see Figure 3b):

L̄i =
∑

j∈knn(i)

ωj (p̄i − p̄j) . (8)

Considering that closer points imply stronger bindings,
we compute the inverse of the distances and normalize them
to obtain the Laplacian weights:

σj =
1

∥p̄i − p̄j∥
, ωj =

σj∑
m∈knn(i)

σm
. (9)

Using the nearest neighbors and Laplacian weights com-
puted above, we generate the same feature for the adapted
hairstyle and penalize its change during retargeting:

Li =
∑

j∈knn(i)

ωj (pi − pj) , Einter-strand =
N∑
i=0

∥∥Li − L̄i

∥∥2
2
.

(10)

4.4 Hair-Body Relationship

In the first stage of our method (see Section 4.1), we produce
an initial transfer result p̂ according to the spatial relation-
ship between the hairstyle and the character model. Besides
serving as the initial value for optimization, we also use p̂
to regularize the optimization variable p in the third energy
term of Equation 1:

Ehair-body =
N∑
i=0

∥pi − p̂i∥22 (11)

(a) (b)

Fig. 3: (a) The geometric references for computing the local
positioning coordinates of the hair-body relationship. (b)
The nearest particles for computing the Laplacian features
of the inter-strand relationship.

4.5 Constraints
After the initial transfer, we obtain the position on the target
scalp where each strand should grow from, and we fix each
root particle to stay at this position:

Croot : pi = p̂i, ∀i ∈ Ir, (12)

where Ir is the index set of root particles.
To ensure the transfer is penetration-free, we project each

non-root particle pi onto the target character model Mt to
get the projection point qi and the surface normal ni at this
point. Then we constrain the particle pi to stay in the upper
half-space defined by qi and ni:

Cpenetration : ⟨pi − qi, ni⟩ ≥ ϵc, ∀i ∈ Ip, (13)

where ϵc is a safe-guard for clearance, and Ip = I − Ir is
the index set of non-root particles.

4.6 Optimization
The complexity of Equation 1 stems from two places. One is
the nonlinear denominator ∥pa − pb∥2 in Estrand-shape. The
other is the dependency of qi and ni on pi in Cpenetration. To
solve the optimization in a robust and tractable manner, we
adopt an iterative update strategy.

In each iteration, we first use the current values of the op-
timization variable p to compute each value of ∥pa − pb∥2,
qi, and ni. Then we fix these values to transform the original
formulation of Equation 1 into a classic quadratic program-
ming problem, since now all the objectives are quadratic and
all the constraints are linear, with respect to p. Specifically,
we use the ADMM algorithm [33] to solve this QP problem
and update p. We end the iterations when p converges.

5 MULTI-SCALE SOLVING

For a typical 3D hairstyle with hundreds of thousands of
strands, the Laplacian energy in Equation 10 has to deal
with the global coupling between millions of unknown
variables. This requires solving a large sparse linear system,
which is the bottleneck of the optimization in Section 4.6.

To accelerate the transfer optimization, we build a hier-
archy for the hair strands and separate the computation into
two scales. A similar strategy is also used in recent studies
for real-time hair simulations [34], [35], [36]. Specifically, we
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Fig. 4: (a) Hair clustering for multi-scale solving. The inset
shows the guide hairs. (b) The front part of the source and
target hairlines. The inset shows the fixed part.

apply the clustering method in [37] to the original hairstyle
to choose a small set of representative hair strands, i.e., the
guide hairs (Figure 4a). The rest of the hair strands are called
normal hairs.

In the coarse scale, we adapt the guide hairs altogether
to establish the global shape structure of the retargeting. We
use the same strategy introduced in Section 4.6 to optimize
Equation 1, but only for the guide hairs. Since their number
is quite low, the sparse linear system from the inter-strands
coupling becomes much smaller. After this global solving,
all the guide hairs have already been adapted to the target
character while preserving their shape features and spatial
interactions.

In the fine scale, we fix all the adapted guide hairs and
use them to constrain the adaptation of normal hairs. To this
end, we adjust the Laplacian defined in Section 4.3 to:

L̄i =
∑

j∈knn(i, Ig)

ωj (p̄i − p̄j) , ∀i ∈ In, (14)

where Ig is the index set of the guide hair particles and
In = I − Ig is of the normal hair particles. In other words,
we find the nearest particles of each normal hair particle only
from the guide hairs, and use these neighbors to compute
the Laplacian. This adjustment breaks the global coupling
between the normal strands, and each strand only depends
on its nearby guide strands. As a result, we separate a large
system into independent parts for individual strands, which
can be readily solved in parallel. This decoupling is based on
the local coherency of hairstyles and is a local approximation
in essence, which is the key to a significant acceleration. The
users could balance the transfer speed and fidelity by tuning
the number of guide hairs. We optimize Equation 1 with this
decoupled Laplacian to achieve the normal hairs adaptation.

6 HAIRLINE EDIT

During hairstyle transfer, users often require design changes
for customization. We introduce a method to support user-
edits of the hairline, as it is one of the salient features of a
hairstyle. To enable this, we first relocate all the hair roots
on the target head to obey the user-input hairline by solving
a physics-based deformation model, and then we adjust the
objectives in Equation 1 to accommodate the relocated hair
roots and fine-tune the optimization.

6.1 Hair Roots Relocation
After the initial transfer, we obtain the positions of the hair
roots on the target head. Then, we extract its scalp region by
collecting all the head mesh triangles with at least one root
particle inside. The boundary of the scalp, i.e., the hairline, is
separated into front/back parts at the ears. We fix the back
part and let users draw a curve to specify the desired look of
the front part (Figure 4b). We also extract the turning points
of the hairline and let the user specify their corresponding
positions on the drawing curve. The dense correspondence
for each segment between adjacent turning points is found
by mapping the normalized arc-length parameters.

With the current shape of the scalp S as the undeformed
configuration and the hairline correspondence h(∗) as the
boundary condition, we compute the target configuration of
S by solving a deformation problem. As a key insight, the
stretching and compression of the scalp should be restricted
to the surface space of the head. Therefore, we treat S as a
membrane model embedded in the head surface and mini-
mize a hyperelastic strain energy under Dirichlet boundary
condition:

min
u

∑
t∈TS

At · ψ (Ft(x(u),X))

s.t. xi = h(Xi), ∀i ∈ I∂S .
(15)

Here TS is the index set of the triangles in S , and At is the
area of triangle t, whose deformation gradient Ft depends
on the undeformed positions X and deformed positions x of
the vertices in S . To enable the head surface embedding, we
rely on an arbitrary parameterization space, e.g., [38], of the
head surface H to conduct the optimization. The variable to
optimize is u, i.e., x’s counterpart in parameterization space.
We choose the neo-Hookean membrane model as the strain
energy density function ψ, which takes F as the input. The
index set I∂S contains all the hairline vertices.

The deformation gradient Ft is a constant 3 × 2 matrix
for each scalp triangle t. Now we omit the subscript t and
represent a deformation gradient as F = d ·D−1, where D
is a 2 × 2 matrix stacking two adjacent edge vectors of the
undeformed triangle in a reparameterized 2D space:

D =
[
X̂1 − X̂0 | X̂2 − X̂0

]
=

∥X1 −X0∥ (X2−X0)·(X1−X0)
∥X1−X0∥

0 ∥(X2−X0)×(X1−X0)∥
∥X1−X0∥

 , (16)

and d is a 3× 2 matrix stacking the two edge vectors of the
deformed triangle in the 3D space:

d = [x1 − x0 | x2 − x0] . (17)

Since the scalp is required to deform on the head surface, a
single deformed vertex of S moves locally inside a triangle τ
of H, whose 3D coordinates x is a barycentric interpolation
on vertices of triangle τ (see Figure 5):

x = [Xτ
1 −Xτ

0 | Xτ
2 −Xτ

0 ]λ+Xτ
0 , (18)

where λ is the 2D barycentric coordinates computed in the
parameterization space of H for the intrinsic parameters u
corresponding to x:

λ = [uτ
1 − uτ

0 | uτ
2 − uτ

0 ]
−1

(u− uτ
0) . (19)
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According to Equations 16-19, F is a linear function of u.
We solve for the 2D parameters u of each deformed scalp

vertex by minimizing the nonlinear objective in Equation 15
under the constraints from hairline correspondence h(∗). In
practice, we conduct this optimization using the Projected
Newton method [39] with a backtracking line search. The
host triangle indices τ must be updated after each Newton
iteration according to the current values of u, i.e., the vertex
positions in the parameterization space. We use a harmonic
map [38] to parameterize H, though the converged result is
insensitive to the choice of parameterization (Figure 17). Be-
sides, our embedded membrane resembles the Lagrangian-
on-Lagrangian approach [40] that employs the limit geome-
try of the Loop subdivision to eliminate the discontinuities
across triangles. For our problem, the iterative solving in a
single parameterization space of the surface is sufficient.

After the scalp deformation, we first move the hair roots
by applying their barycentric coordinates to the deformed
scalp vertices, and then project them onto the head surface
H to eliminate the discretization error left. By leveraging the
physics-based hyperelasticity energy, our relocation strategy
enables a natural and smooth diffusion of the given hairline
displacements over the whole scalp, while bringing minimal
distortions to the original distribution of the hair roots.

3D Space

Scalp Deformation
Gradient       

Parameterization Space

Scalp Mesh

Head Mesh

Fig. 5: The scalp region is a subset of the head mesh. We
copy it as the undeformed configuration and constrain the
scalp mesh to deform only on the head mesh. The energy in
Equation 15 measures how large the scalp deformation is in
the 3D space. Meanwhile, the deformed 3D position x of a
scalp vertex is determined by its 2D coordinates u, which we
optimize in Equation 15, in the head parameterization space.
In this way, we model the scalp as an embedded membrane.

6.2 Shape Adaptation Tuning

With the relocation of the hair roots ready, we still have to
tune the shape adaptation in Section 4 for it. First, we change
the right-hand side of the constraints in Equation 12 to the
relocated positions of hair roots. Second, the redistributed
hair roots make it harder to balance the preservation of in-
dividual strand shapes and spatial relationships. Therefore,
we introduce an adaptive weight for each non-root particle
according to its curve-space position in the strand:

γi = 1− e−σ(si/ri)
2

, (20)

where si is the arc length from particle i to its hair root, ri
is the traveling distance of the hair root during relocation,
and σ is a constant that we set to 0.2. The closer a particle
is to its hair root, the larger this weight is. Accordingly, we

fine-tune the energy terms for the inter-strand and hair-body
relationships:

Einter-strand =
N∑
i=0

γi ·
∥∥Li − L̄i

∥∥2
2

Ehair-body =
N∑
i=0

γi · ∥pi − p̂i∥22 .
(21)

Harnessing such tuning to the optimization, we can produce
a transfer result with a visually pleasant trade-off between
the preservation of different shape factors, under a moderate
hairline adjustment.

7 EXPERIMENTAL RESULTS

7.1 Implementation Details
We build our system on a desktop PC with an Intel Core i9-
13900K CPU and 128 GB memory. We implement the opti-
mization module with the auto-differentiation tool Chumpy
[41] and the OSQP solver [42]. Moreover, we use ANN [43]
to find the nearest neighbors and libigl [44] to parameterize
the head surface mesh. In Table 1, we list all the hyperpa-
rameters for our method, and we set their values by using
meters as the unit of model size.

TABLE 1: The hyper-parameters used in our algorithm.

Symbol Description Value

α the weight of Einter-strand in Eqn.(1) 3e3
β the weight of Ehair-body in Eqn.(1) 1e3
k the #neighbors for knn in Eqn.(8) 5
ϵc the clearance safeguard in Eqn.(13) 5e-4
ϵs the discrepancy threshold in Eqn.(6) 0.3

7.2 Diversity and Consistency
Our method is capable of retargeting diverse 3D hairstyles
to characters with distinct body shapes. We exemplify some
results in Figure 7, which contains 8 hairstyles with different
lengths, curliness, growth directions, split styles, and braid
styles, and 3 target characters with different ages, genders,
and races. The transferred hairstyles faithfully preserve the
shapes and spatial interactions of the sources.

We execute two regression experiments, i.e., the reflexive
test and cycle test, to demonstrate the inherent consistency of
our retargeting method. We show these regression results in
Figure 6. Visually, they are almost indistinguishable from the
original hairstyle. In Table 2, we report their corresponding
per-particle distances and per-segment angle differences.

(a) source A (b) A → A (c) A → B (d) A → B → A

Fig. 6: (a) The character A and its hairstyle. (b) reflexive test:
Retargeting the hairstyle from A to itself. (c) Retargeting the
hairstyle from A to B. (d) cycle test: Retargeting the hairstyle
from A to B and then back to A.
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Fig. 7: Our method is capable of retargeting diverse hairstyles. The first row shows 8 source hairstyles, and the next rows
show their adaptation variants by retargeting to 3 different target characters. See the supplemental for more results.

TABLE 2: Quantitative errors of the regression experiments.

Mean Distance Mean Angle

Regression 1 (reflexive) 7.85× 10−8 m 3.75× 10−6 rad
Regression 2 (cycle) 1.97× 10−3 m 4.64× 10−3 rad

7.3 Ablation Study

7.3.1 Constrained Optimization

We conduct qualitative experiments to justify the necessity
of individual energy terms and constraints in Equation 1.

Figure 8a demonstrates the efficacy of the energy term
Estrand-shape in Equation 7. Without it, the strand curvatures
quickly distort during the optimization due to the preserva-
tion of other shape factors.

Besides the shapes of single strands, the spatial relation-
ships between adjacent strands are significant visual clues
to a hairstyle. Accordingly, Figure 8b shows the efficacy of
Einter-strand in Equation 10. Without this term, the clustering
and spread-out effects are easily damaged during the opti-
mization.

Different characters have distinct shapes of head, face,
neck, and shoulder. The spatial positionings of the strands
relative to the body would quickly become inaccurate after
retargeting if the energy term Ehair-body in Equation 11 is not
incorporated during the optimization (see Figure 8c).

Correct collision handling is crucial for successful retar-
geting. As shown in Figure 8d, the interpenetration artifacts
emerge soon if the hard constraint Cpenetration in Equation 13
is not incorporated.

In contrast, with our complete formulation (Equation 1),
all the energy terms and constraints mutually confine each
other to achieve a balanced shape preservation. To provide

a quantitative reference, Figure 9 compares the per-particle
and total objective values computed on results of Figure 8.

7.3.2 Local Positioning Strategies
The local positioning of hair particles relative to the char-
acter body determines the quality of initial transfer (Section
4.1). In Figure 10, we compare three local positioning strate-
gies, i.e., [25], [45], and our modified version of [26]. Specif-
ically, [25] finds the closest triangle on the body to each hair
particle as its anchor, while [45] builds this correspondence
by searching the coverage volume defined on each triangle,
and the modified [26] selects the best bones to compute the
positioning rays. We find that the modified [26] provides the
most consistent local-positioning across all the hair particles,
due to the fact that the body shapes usually differ much but
the reference bones are rather stable.

Moreover, all the above local positioning strategies pro-
duce sharp turning points in the initial transfer result (Fig-
ure 11), whose smoothness is crucial for ensuring the con-
vergence of the following optimizations. This necessitates
an extra step for adaptive smoothing (Equation 4) right after
recovering the local positionings on the target character.

7.4 Multi-scale Transfer
The ablation study shows that preserving the inter-strands
relationship is crucial for retargeting fidelity. However, the
corresponding Laplacian energy requires solving a large lin-
ear system from the global coupling, which makes the whole
optimization intractable for high-resolution hairstyles. For a
typical curly hairstyle with 113K strands and 2.9M particles,
the global solver consumes up to 86GB of memory during
optimization and requires over 1 hour to complete the entire
retargeting. Fortunately, our multi-scale solver introduced
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source with w / o source with w / o source with w / o

with

w/o

Fig. 8: Ablation study for the objectives and constraints used in the shape adaptation optimization (Equation 1).

368.7 671.9

171.7 314.8

with w / o

(a) Estrand-shape

0.633 1.319

0.580 1.080

with w / o

(b) Einter-strand

1.569 5.911

3.716 19.80

with w / o

(c) Ehair-body

Fig. 9: The objectives computed on results of Figure 8.

source modified [26] [45] [25]

Fig. 10: Comparison of different local-positioning strategies.

[45] [25] [26] [26] + smooth

Fig. 11: Sharp turnings necessitates an adaptive smoothing.

in Section 5 consumes only 1.2GB of memory and takes less
than 2 minutes to optimize, which is two orders of magnitude
faster. Figure 12 shows that the retargeting results produced
by the global and multi-scale solver do not have significant
visual differences. See the supplemental for more results.

source

1.91

w/o ISR

0.15

global

0.41

multiscale

Fig. 12: The adaptation without the inter-strand relationship
(ISR) is over-smoothing. With ISR enabled, both the global
and multi-scale solvers produce good fidelities. At the upper
right, we show the per-particle and total value ofEinter-strand.
Though the multi-scale solver resorts to the guide hairs and
optimizes a decoupled version of the inter-strand energy, a
sufficient decrease is still obtained.

(a) w/o edit (b) hairlines (c) our method (d) 3D RBF

Fig. 13: (a) The transfer result without hairline edits. (b) The
source/target hairlines. (c-d) Hairline edits with our embed-
ded membrane and 3D RBF interpolation, respectively.

7.5 Transfer with Hairline Edits

Our method supports diverse hairline edits. Figure 14 shows
the retargeting results of 3 distinct hairstyles for 6 common
hairline types, and Figure 15 shows more edits.

The hair roots relocation step introduced in Section 6.1 is
the key to retargeting with hairline edits. We thus compare
our embedded membrane formulation in Equation 15 with
several alternative models to show its superiority.

In Figure 13, we compare to an RBF-based 3D interpola-
tion method, choosing the thin plat spline, i.e., TPS, as the
radial basis function. Specifically, we sample a sparse set of
vertices inside the scalp to fix, i.e., zero displacements. Then,
we combine them with the hairline vertices as the seeds and
use their prescribed 3D displacements as the known data to
fit an 3D displacement field based on RBF. Finally, we apply
this 3D displacement field to all the free vertices of the scalp
and reproject the displaced vertices onto the head to obtain
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Straight Bell-shaped Uneven M-shape Triangular Widow’s Peak

Fig. 14: Our method supports diverse hairline edits. The first column shows the source hairstyles. The following columns
show their retargeting results to a new character with 6 common hairline types. See the supplemental for more results.

Fig. 15: The sideburns (left) and baldness (right) edits.

TABLE 3: Density changes of the hair roots. For 10 hairstyles
under 2 hairline edits (S for straight, W for widow’s peak),
we compute the L1 and L∞ norms of the density change
vectors and report the min, max, and avg values across all the
combinations. Compared with the alternatives (Figure 16),
our method produces much smaller distortions consistently.
LSCM [46] is used for parameterization. See the supplemen-
tal for per-hairstyle data.

∥ · ∥1 of density change ∥ · ∥∞ of density change
Our Harmonic RBF(2D) Our Harmonic RBF(2D)

min(S) 0.015 0.034 0.041 0.279 0.369 0.322
max(S) 0.048 0.122 0.152 1.023 1.706 2.886
avg.(S) 0.035 0.073 0.081 0.457 0.672 0.719
min(W) 0.019 0.034 0.047 0.280 0.435 0.372
max(W) 0.052 0.125 0.126 0.991 1.706 2.742
avg.(W) 0.035 0.071 0.080 0.447 0.816 0.755

the relocated hair roots. Figure 13d shows that this method
produces unnatural compression and distortion of the hair
distribution.

The reprojection mentioned above is necessary because
the interpolated vertex displacement is free in 3D, while the
head surface is intrinsically 2D. To avoid such reprojection,
we instead build a 2D displacement field in the parameter-
ization space of the head. Specifically, we experiment with
two different methods. One is to use an RBF interpolation as
above but in 2D. The other is to solve a harmonic function
on the parameterized scalp mesh with the same boundary
conditions as our embedded membrane formulation. Both

methods produce a 2D displacement field to move the scalp
vertices in the parameterization space and recover their 3D
positions. Since the hair-root relocation effects of these two
methods depend on the parameterization, we compare two
choices in Figure 16, i.e., LSCM [46] and ARAP [47].

The uniformity of the scalp deformation determines the
quality of the hair-root relocation. Figure 16 compares the
scalp mesh deformation generated by our embedded mem-
brane and all the alternatives. In this figure, we also show
the density change of the hair roots over the scalp region.
Specifically, for each triangle, we define the average density
as the number of hair roots in this triangle divided by its
area. We compute per-triangle density values on the initial
and deformed mesh, respectively, and stack all their relative
changes into a vector. Table 3 sums up the L1 and L∞ norms
of the density change vectors across 10 hairstyles under 2
different hairline edits. The smaller the relative change, the
less distortion the deformation introduces, and the smoother
the hair-root relocation is.

Though our embedded membrane also requires a surface
parameterization to optimize the scalp vertex, the deforma-
tion energy itself is defined in the 3D space. Therefore, our
method always converges to similar results no matter which
parameterization algorithm is used. Figure 17 compares the
scalp deformation with four popular parameterizations, and
the results are consistent.

7.6 Performance

In practice, given the source character and the 3D hairstyle
customized for it, we first extract the necessary information
in advance for subsequent retargeting tasks. Such prepro-
cessing depends on these source models only and is agnostic
of any other characters. Specifically, we compute the local
references and coordinates for hair particle positioning with
respect to the body, the guide hairs for multi-scale solving,
and the knn sets for hair Laplacian. Harnessing the extracted
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W/O Hairline Change Embedded Membrane Harmonic   ( LSCM ) Harmonic   ( ARAP )  2D RBF   ( LSCM ) 2D RBF  ( ARAP )

Fig. 16: From up to bottom: the produced 3D hairstyles, the deformed scalp mesh, and the hair-root density changes. The
first column is the ground truth, i.e., retargeting without hairline edits. The following columns show the retargeting results
with the same hairline edit (see row 2, column 1), using different hair-root relocation methods. The name in the parenthesis
represents the surface parameterization method used. Compared with our embedded membrane method, the alternatives
produce much more compressions and distortions in the scalp (see both the meshes and the density errors).

ARAP Harmonic LSCM Method in [37]

Fig. 17: Retargeting results under the same hairline edit by
using our embedded membrane with four different parame-
terizations, i.e., ARAP [47], Harmonic map [38], LSCM [46],
and the one introduced in [37].

information, we obtain an adaptable hairstyle ready for retar-
geting. At runtime, we adapt this hairstyle to an arbitrary
target character, with an optional user edit of the hairline,
by solving the constrained optimizations (Equation 1, 15).

Table 4 shows the model complexities of all the experi-
mented 3D hairstyles and their transfer time. The QP solv-
ing dominates the runtime computation. Although the most
complex hairstyle contains more than 110K strands and 8M
particles, our method produces a high-fidelity transfer result
in 5 minutes at runtime, ensuring its practical use in digital

human applications.

8 CONCLUSION, LIMITATION, AND FUTURE WORK

We present a method to automatically adapt a 3D hairstyle
from the source character to a distinct target, and we design
a constrained optimization framework to achieve this. With
dedicated energies and constraints, the adapted 3D hairstyle
can faithfully preserve the shapes and spatial interactions of
the source models. Considering the high-resolution nature
of 3D hairstyles, we build a two-level hierarchy for strands
and employ a multi-scale solving strategy that substantially
accelerates the nonlinear optimization. Moreover, to satisfy
the user requirements for hairline edits, we apply an embed-
ded membrane formulation to redistribute all the hair roots
uniformly. The experiments demonstrate the effectiveness of
our method.

Our method requires the same topology for the source
and target characters, which is necessary for transferring the
spatial positioning conditions of the hair-body relationship.
However, algorithms like [48], [49] could be conducted first

Fig. 18: (left) The source hairstyle and its transfer to another
character with a large variance of pose, where artifacts arise.
(right) Drastic hairline edits lead to unnatural distortions.
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TABLE 4: Runtime Statistics. Columns from left to right: the model name, the number of hair strands/particles, the number
of guide strands, the preprocessing time, the initial transfer time, the hair-root relocation time, the multi-scale solving time,
and the total runtime (in seconds). We also list the full global solving time and the speedup of the multi-scale solving.

Runtime

Hairstyle #Strands / #Particles #Guides Preprocess Initial
Transfer

Hair-root
Relocation

Multi-scale
Solving Total Full

Solving Speedup

Short hair (Fig.7, col 1) 65,819 / 460,376 302 6.66s 6.35s N/A 14.20s 20.55s 440.58s 31×
Dreadlocks(Fig.7, col 7) 101,763 / 4,986,476 309 74.37s 21.41s N/A 113.73s 135.14s 6,960.05s 61×
Spiky (Fig.7, col 2) 109,097 / 2,218,745 318 30.30s 11.63s N/A 52.12s 63.75s 3,061.56s 59×
Side fringe (Fig.7, col 3) 112,962 / 2,961,992 302 44.0s 14.67s N/A 73.65s 88.32s 3,940.99s 54×
Ponytail (Fig.8, row 1, col 7) 85,259 / 2,837,372 297 61.98s 12.90s N/A 51.59s 64.49s 5,726.29s 111×
Long hair 1 (Fig.7, col 6) 49,991 / 7,229,645 312 165.66s 38.41s 21.23s 148.70s 208.34s 13,810.93s 93×
Long hair 2 (Fig.7, col 8) 96,089 / 8,473,200 316 105.52s 34.47s 25.92s 207.79s 268.18s 8,021.95s 39×
Updo 1 (Fig.2) 86,847 / 5,542,057 308 122.62s 21.30s 26.71s 177.80s 225.81s 10,337.34s 58×
Curly (Fig.7, col 4) 117,364 / 4,456,984 316 121.66s 15.24s 22.67s 130.31s 168.22s 9,643.62s 57×
Updo 2 (Fig.7, col 5) 111,042 / 6,769,042 302 167.06s 26.27s 23.34s 205.53s 255.14s 18,245.06s 89×
Med-Len (Fig.1) 84,268 / 6,207,432 329 113.78s 23.65s 20.03s 120.52s 164.20s 19,890.22s 165×

to build a dense correspondence when the character models
have different topologies.

We also require the source and target characters to have
similar poses. Although the optimization objective is pose-
variant, our method is insensitive to a minor difference in
pose. However, when significant pose differences arise (see
Figure 18 left), the physics-based hair simulation might be
feasible to produce visually plausible results [50], [51].

The quality of hair-root redistribution could deteriorate
under a drastic hairline edit (see Figure 18 right). In such a
case, the texture synthesis technique for hair, e.g., [37], is a
better choice.

Due to its robust and effective retargeting capability, our
method can be regarded as a data augmentation tool to in-
crease the variances and capacities of existing hair datasets,
e.g., [11]. Training neural networks on such augmented data
is beneficial to advance interactive VR techniques for digital
humans. Moreover, making our method differentiable could
provide a semantic loss to enable self-supervised learning.
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