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Figure 1: Starting from single images with segmented interest regions, we generate cuboid proxies for partial scene modeling enabling a
range of smart image manipulations. Here, we replace furniture in one image using candidates from other images, while automatically
conforming to the non-local relations extracted from the original scene, e.g., the sofas have the same heights, table is correctly placed, etc.

Abstract

Images are static and lack important depth information about the
underlying 3D scenes. We introduce interactive images in the con-
text of man-made environments wherein objects are simple and
regular, share various non-local relations (e.g., coplanarity, paral-
lelism, etc.), and are often repeated. Our interactive framework
creates partial scene reconstructions based on cuboid-proxies with
minimal user interaction. It subsequently allows a range of intuitive
image edits mimicking real-world behavior, which are otherwise
difficult to achieve. Effectively, the user simply provides high-level
semantic hints, while our system ensures plausible operations by
conforming to the extracted non-local relations. We demonstrate
our system on a range of real-world images and validate the plausi-
bility of the results using a user study.
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standing, cuboid proxies, coupled optimization.
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1 Introduction

Images are the most popular medium for quickly capturing our
surrounding 3D world. This is not surprising given the simplici-
ty of the representation and the ease of acquiring high-resolution
inputs. A natural desire is to manipulate such images, mimicking
real-world interactions. Traditionally, however, image editing has
largely focused on local pixel- or patch-level 2D operations. On-
ly recently have large-scale region-based manipulations have been

enabled by exploiting image-space structures and non-local repeti-
tions [Oh et al. 2001; Wang et al. 2008; Barnes et al. 2009; Cheng
et al. 2010].

Direct object-level manipulation of images, however, remains elu-
sive. The primary bottleneck is the lack of underlying 3D scene
information. Specifically, absence of depth cues makes it challeng-
ing to alter perspectives or plausibly resolve inter- and intra-object
occlusion and illumination changes that are necessary for realistic
object-level manipulations. While an understanding of the scene
can remove many such restrictions, automatic 3D reconstruction
from a single image unfortunately is ill-posed in absence of priors
or user-assistance (see [Sinha et al. 2008; Jiang et al. 2009; Jain
et al. 2010]). Hence, existing methods either heavily rely on the
availability of suitable priors (e.g., symmetry, 3D models, etc.), or
require moderate to heavy user assistance.

In contrast, we humans find it second nature to reason about com-
plex scenes even from single images [Biederman et al. 1982]. One
hypothesis is that we recover non-local relations and structures
from the underlying scenes and use the information to abstract a
plausible mental model of the 3D scene [Norman 1990]. Especially
in the context of man-made objects, e.g., tables, chairs, shelving
units, etc., such relations and regularities are abundant and often
relate to object function and affordance [Gibson 1979]. Our goal is
to make images interactive using minimal user intervention. To this
end, we need to robustly extract non-local relations across scene ob-
jects. The main challenge is to extract such relations and calibrate
the scene from a single input image simultaneously.

Although high-quality 3D reconstruction from a single image re-
main difficult, we semi-automatically extract a collection of 3D
cuboid proxies to plausibly approximate images of man-made ob-
jects where structure and non-local relations are abundant. Intu-
itively, these proxies along with their non-local mutual geometric
relations provide sufficient regularization to recover a partial scene
model with minimal user input. While the proxies do not provide
an accurate scene reconstruction, we demonstrate that they are suf-
ficient to enable many plausible and powerful object-level image
manipulations. For example, in Figure 1, the replaced furniture
are automatically adjusted to conform to the relations detected in
the input image, e.g., coplanarity across seating surfaces and the
tabletop.
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First, in the analysis phase, the user draws a few strokes to annotate
the objects of interest in an input image. We then automatically
extract an initial camera calibration and potential proxy edges cor-
responding to each segment, thus creating an initial collection of
upright 3D cuboid-based scene approximations. In a key step, we
resolve occlusion and stacking ambiguities using a Markov Ran-
dom Field (MRF) formulation and propose a joint 2D-3D optimiza-
tion to conform to the detected non-local relations and repetitions.
Note that we simultaneously optimize the camera parameters, the
proxy attributes, and their orientations. For complex objects, e.g.,
tables, we propose a decomposition to obtain tighter fitting proxies.
Finally, we use the proxies with user hints to estimate a light po-
sition and extract shadow regions, and decompose the input image
into a background layer and textured 3D proxies along with their
mutual relations.

Subsequently, in the edit phase, we enable different smart object-
level manipulations, e.g., translate, rotate, deform, on the input
image using the extracted 3D proxies, thus recreating real-world
interactions. Specifically, based on the extracted geometric proxies,
we expose only the useful degrees of freedom. We combine the geo-
metric constraints with human understanding: while the 3D proxies
greatly simplify image editing by maintaining non-local relations,
the user manipulates the image using her semantic understanding of
the scene (see supplementary video and demo). In our interactive
framework, user assistance, when needed, is mainly restricted to
high-level hints like annotating a missed relation (e.g., indicating
that two proxies share a hinge joint in Figure 10). Such relations
are easy for humans to infer and greatly increase edit possibilities.

We demonstrate our framework on a range of images and present
a number of applications (see supplementary material). We evalu-
ate the plausibility of the manipulations on real-world scenes with
ground truth data and also using a user study.

Contributions. In summary, we introduce:

• an interactive image manipulation framework enabling object-
level interactions mimicking real-world behavior using image-
based scene understanding;

• a joint image- and scene-space optimization to initialize and re-
fine 3D proxies, resolve their occlusion and stacking ordering,
and extract their non-local mutual relations and repetitions; and

• intuitive move, deform, and delete operations on input images
of man-made scenes while maintaining the extracted relations.

2 Related Work

Traditional image editing. Retouching photographs has a long
history starting from traditional darkroom techniques to modern
digital touchup tools. Most commercial image editing tools now
provide basic support for removing scars, user-guided segmenta-
tion, illumination adjustment, patch reshaping or replacement, etc.
Complex edits, however, are still tedious and can take hours of man-
ual efforts. State-of-the-art image editing techniques include seam-
less editing of image regions [Pérez et al. 2003], appearance ma-
nipulations [Shapira et al. 2009], image-space retargeting [Rubin-
stein et al. 2009]. These techniques work on local/regional image
features and are (largely) oblivious to underlying image structures
in the absence of depth. Hence, plausible handling of perspective
effects, occlusion changes, or shading variations for moving and
deforming objects remain challenging.

Semantic-based image editing. Preservation of image-space se-
mantics, often identified by user annotations, can lead to powerful
edits. For example, Oh et al. [2001] allow users to provide depth

annotations and extract layers from a single image and then to use
the information for distortion-free cloning and other operations.
Hoiem et al. [2005] label image regions of outdoor scenes into
ground, vertical, or sky, and then cut-and-fold the images to create
3D photo popups. In order to edit repeated objects in a single im-
age, the RepFinder system [Cheng et al. 2010] extracts a template
element from user markings, searches for image space repetitions,
and produces plausible depth layering among them. The extracted
information is then used towards non-local interactions across the
repeating elements.

In a notable effort, the Photo Clip Art system [Lalonde et al. 2007]
allows users to directly insert new objects into existing photographs
using an image-based approach. Instead of tackling the problem
of manipulating objects to change the view, the system simply re-
trieves a suitable object with desirable attributes from a massive
image-based object library. Missing 3D information, however, pre-
vents operations involving changes in perspective, e.g., due to rota-
tion, or handling 3D relations.

Zhou et al. [2010] and Jain et al. [2010] propose data-driven ap-
proaches by fitting 3D human models to images and videos, respec-
tively. Subsequently, they map low-parameter morphable models
of humans to image-space operations to allow intuitive edits. The
approaches are difficult to generalize as they require availability of
appropriate 3D models. Instead, we demonstrate that, by work-
ing with simple proxies and their geometric inter-relations as con-
straints, intuitive edits can be performed for a large range of images
of man-made scenes.

In another effort, working directly with images, Carroll et al. [2010]
treat user annotated lines as projective constraints, e.g., vanishing
points, to compute as-shape-preserving-as-possible 2D warps for a
variety of powerful image level manipulations (see also the latest
Adobe Photoshop vanishing-point plugin). Our focus, however, is
to enable scene-level manipulations.

Image-based 3D reconstruction. Reconstructing 3D scenes from
images and videos has been intensively studied both in the com-
puter graphics and vision communities (see [Seitz et al. 2006] for
a survey). The methods, however, are not applicable for scene
reconstruction from single images, which is an ill-posed problem.
Instead, single image-based modeling methods rely on detection of
vanishing points, availability of user-provided depth annotation, or
scene objects being symmetric to perform camera calibration (see
[Zisserman et al. 1999; Sinha et al. 2008; Xue et al. 2010]). Such
methods are either sensitive to noise or require extensive user inter-
actions.

Alternately, geometric primitives such as parallelepiped or pyramid
frustums have been used to calibrate the camera pose and obtain
proxy-based 3D reconstruction [Wilczkowiak et al. 2005; Jiang
et al. 2009]. In our framework, we use a similar approach for initial
calibration and refine the extracted proxies using a joint optimiza-
tion (see Figure 4). While such 3D proxies are too coarse for accu-
rate scene reconstruction, we demonstrate that they are sufficient,
especially with the extracted intra- and the inter-object relations, to
act as substitutes for various non-local image edits.

Image understanding. Our work is inspired by the recent advances
in image-based scene understanding (e.g., [Saxena et al. 2009; Gup-
ta et al. 2010; Hedau et al. 2010; Gupta et al. 2011]). For example,
starting from a single image, the Make3D framework [Saxena et al.
2009] learns the orientation and parameters for a set of planar prox-
ies to best explain the input image. In another attempt, Gupta and
colleagues use simple user annotations to model a scene as a col-
lection of candidate axis-aligned boxes. In the context of indoor
scenes, they perform a joint analysis of the extracted box-based
scene geometry and human motion data to predict human poses
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Figure 2: Interactive images: We create cuboid-based proxies to represent segmented objects of a single image, decompose the input into a
background image and textured proxies, and enable a range of intuitive interaction possibilities.

and region annotation from a single image, e.g., a person sitting
on a couch. In the context of outdoor scenes, they use physical
constraints, e.g., statics, volumetric, occlusion, etc., to decompose a
facade image into an axis-aligned box layout. The algorithms look
for coarse axis-aligned boxes or planar proxies that are sufficient
for their target applications, but such proxies are too coarse for our
target manipulations (see Figure 15 and supplementary material).

Although significant progress has been made in image understand-
ing, the findings have rarely been used for computer graphics appli-
cations. In one exception, Karch et al. [2011] use box-level proxies
to extract appearance properties from a single image using a non-
linear optimization. Subsequently they demonstrate powerful illu-
mination effects by rendering synthetically introduced 3D objects
using the estimated boxes to evaluate shading and shadow effects.
They focus on appearance and rendering effects, while we focus on
geometric edits (e.g., move, deform, and delete objects) that require
much more structured 3D information. Further, we do not need a
Manhattan assumption requiring objects to be axis aligned.

Image completion. Starting from early influential efforts on texture
synthesis [Efros and Leung 1999] and image inpainting, various
methods have been proposed for image completion [Hays and Efros
2007; Wei et al. 2009]. While most approaches focus on pixel- or
patch-level operations, Sun et al. [2005] use manual annotations
of image-space structures as guides to achieve significantly im-
proved completion results. In our framework, we use the extracted
3D structures for better image completion and occlusion handling
while using PatchMatch [Barnes et al. 2009] for image completion.

3 System Overview

Our system takes as input a single image and is applicable to those
regions that can be approximated using a collection of simple 3D
primitives, e.g., office furniture, other man-made objects. Further,
we assume that: (i) objects rest on some dominant horizontal sur-
face (e.g., a tabletop or floor plane) or they are stacked on the sur-
face, (ii) one or more cuboid-like objects are available to help with
initial calibration, (iii) the scene objects are opaque, and (iv) shad-
ows appear primarily due to a single-point (or directional) light
source.

User experience. Our goal is to create an image manipulation
system that is fast, simple, robust, and, most importantly, smart,
i.e., mimics real-world experience in response to user interaction-
s. For this purpose, we exploit non-local relations and repetitions
across objects. The user loads an image and segments out respec-
tive regions using GrabCut [Rother et al. 2004]. Then, the system
automatically extracts a background layer, textured 3D proxies, and
their mutual relations. Although the proposed method is automatic,
we support override possibilities, i.e., when any stage fails, the us-
er can intervene to resolve ambiguities using corrective high-level
annotations, e.g., deleting false edges, adjusting corner points, etc.

(see Section 7). Subsequently, the user interacts with the image in
real-time (see supplementary video and demo).

Our framework runs in three stages (see Figure 2): (i) scene analy-
sis, (ii) image decomposition, and (iii) interactive editing.

(i) Scene analysis. We start with user-annotated rough regions
of interest {R1, . . . ,Rn} of an input image such that each region
corresponds to one object of interest. For each region Ri, we ex-
tract candidate corner points by analyzing (the convex hull of) the
segmentation boundary of Ri. Using the extracted corner points,
we automatically create initial cuboid proxies for the image objects
along with a camera calibration. Next, in an important phase, we
propose an iterative joint optimization to progressively align the
projected 3D proxies to the image-level edges and use an MRF for-
mulation to resolve occlusion and stacking, while also extracting
and conforming to extracted scene-level relations, e.g., placement,
coplanarity, repetition, etc. Specifically, we refine the proxy pa-
rameters, their orientations, and also the camera parameters, while
simultaneously resolving ambiguities using a coupled proxy anal-
ysis. For example, in Figure 6, we resolve the occlusion ordering
and stacking of the blocks, while concurrently optimizing the proxy
attributes and camera parameters.

The extracted proxies can still have large voids for non-convex ob-
jects, e.g., chairs, shelves, etc. Based on the observation that man-
made objects are usually fabricated using parts aligned to object
boundaries (i.e., bounding box faces), we propose an automatic
decomposition procedure (see Figure 7). We use a heuristic to
generate a set of cutting planes based on the analysis of the segmen-
tation contours aligned with the vanishing points to decompose the
3D proxies using parallel faces. Subsequently, we greedily remove
sub-cuboids that lie outside the respective segmentation regions. In
ambiguous cases, we allow the user to intervene.

Certain important functional constraints of man-made objects are
often invisible, e.g., hinges of a door, or the sliding mechanism of a
drawer. Such relations, however, amount to identifying the proxies
that are connected, and then reasoning in 3D to parameterize the
connections. We allow the user to annotate such semantic relation-
s by simply identifying proxy pairs, while the system optimizes
for the respective joint attributes (see Figure 10 and supplemen-
tary video). Intuitively, the user resolves the ambiguity in the data
through simple strokes, while the underlying optimization responds
smartly to create a cuboid-based scene representation.

(ii) Image decomposition. We expect the user to roughly indicate
shadow correspondences for two (or more) objects. We then use
the extracted 3D proxies to recover a light position and determine
the shadow boundaries. Finally, we decompose the scene into (a) a
background layer by removing the proxies and their estimated shad-
ows and filling in the missing parts, (b) 3D textured proxies for the
individual regions with hidden parts plausibly filled in using sym-
metry, repetitions, etc., and (c) a set of relations among the proxies
and with the ground plane.
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Figure 3: Based on detected corners (green crosses) of the extract-
ed hexagon boundary (left), we assign correspondences to a 3D
upright cuboid parameterized by l1 and l2. The information is used
to obtain an initial camera calibration and then to create initial
proxies for other segmented regions in the input (see Figure 4).

(iii) Interactive editing. The extracted 3D proxy-level scene un-
derstanding enables several possibilities: (a) moving objects using
translation or rotation while conforming to placement constraints,
e.g., a box is moved on the table, (b) deleting objects, (c) perform-
ing coupled non-local edits, and (d) introducing objects from other
images (see [Karsch et al. 2011] who introduce synthetic 3D object-
s). During interactions, we propagate constraints across the proxies
to preserve both the intra-object characteristics as well as their non-
local mutual relations (see also [Gal et al. 2009; Yang et al. 2011]).
For example, when the face of a table is lifted up, all the objects
lying on it are accordingly lifted up, while the sizes of the individual
objects remain unchanged (see Figure 12). Note that effects due to
contacts, occlusion, shadow, and perspective are naturally handled
in our system.

4 Coupled 2D-3D Analysis

Many image manipulation tasks are greatly simplified by having
even an approximate 3D model (of relevant parts) of the underlying
scene. Although significant progress has been made in automatic
scene understanding from a single image, we need 3D proxies with
higher accuracy for image manipulations. We now introduce an
algorithm to extract robust cuboid-based 3D geometry for images
of man-made objects with minimal user interaction.

a) Initial camera calibration. For any segment Ri, the goal is to fit
a 3D box-proxy. Since the scene objects are assumed to be opaque,
we expect the convex hull of the boundary CH(∂Ri) to have six
corner points. We use dynamic programming to break CH(∂Ri)
into six parts such that the resultant curves are best approximated
by line segments (see Figure 3). Let the corresponding end points of
the curves be p0

i , . . . , p5
i , which we then approximate as a hexagon

Hi. Note that outliers from occlusions are detected and handled
later.

We align the edges of Hi to the image segmentation to reduce the
fitting error in 2D using an iterated closest point (ICP)-like method.
Specifically, for each point on CH(∂Ri) we find its closest edge in
Hi. Thus, each edge in Hi becomes associated with a set of segmen-
tation boundary points. We then apply least-squares line fitting to
the points associated with the hexagon edges to refine the estimate
for Hi. We iterate for a fixed number of steps (3 in our setting).
Next, we solve for a cuboid-proxy along with a camera calibration
such that the projection fits the image information, i.e., it agrees
with Hi.

For initial camera calibration, we use geometric primitives (see also
[Wilczkowiak et al. 2005]). Specifically, we assume that each seg-
ment is the image of a cuboid. Hence, we use the extracted corner
points of segment Ri to fit a cuboid of unknown dimensions l1, l2
(assuming unit height). We take the world origin as the center of

dominant direction
(for ‘double clip’ box)
dominant direction
(for ‘double clip’ box)

lalb

lc ld

Figure 4: Starting from a rough camera calibration that is extract-
ed based on a segment boundary (top-left), for each region Ri we
identify a dominant line direction (top-right). We use these direc-
tions along with the current xy-vanishing line estimate to produce
initial cuboid proxies (bottom-right). We use a joint optimization to
simultaneously refine the camera parameters, the proxy attributes,
and the extracted non-local relations across the proxies (bottom-
left). Note that the proxies need not be axis-aligned.

the base-face of the cuboid and the world axes to be aligned with
the cuboid axes (see Figure 3). We use the possible correspondence
(note there are multiple possible assignments) between the extract-
ed corners in 2D and the cuboid corners in 3D to determine the
camera parameters, and l1, l2. A common camera projection matrix
model is described as M3×4 := K[R|t], where K is the intrinsic cam-
era matrix (K ∈ R3, since we vary u, v, f ) and R, t ∈ R3 represent
the camera position. Working with homogeneous coordinates, the
projection matrix maps each cuboid corner P j to a corresponding
image point p j

i , i.e., p j
i ' MP j, where ' means equality up to a

scale. Using the six correspondence pairs P j → p j
i , we solve for 11

unknowns in K,R, t, l1, l2 using a linear program (see [Hartley and
Zisserman 2006; Jiang et al. 2009] for details). We retain the best
solution, provided the system of equations is non-degenerate. Note
that each region can independently produce one camera calibration.
Next, under each camera, we create initial estimates of cuboid-
proxies for the other scene objects. For each camera along with
the estimated proxies, we perform a joint optimization to construct
an aligned scene and select the one with the least fitting error.

b) Initial scene estimation. Using the camera projection matrix,
we compute the vanishing points along the z-direction as well as
the vanishing line corresponding to the xy-plane [Zisserman et al.
1999]. We observe that any upright cuboid is uniquely determined
once we have three pairs of parallel edges on its silhouette. Further,
we make use of the assumption that most objects lie on the ground
plane, i.e., xy-plane. Next, we extract proxies for all the individual
segments in the image (with respect to each candidate camera).

For hexagon Hi of each segment, we identify the line segments
along the vertical direction. Among the remaining four line seg-
ments, say ordered as la, lb, lc, ld , we select the pair (la, lc) or (lb, ld)
that better agrees with the xy-vanishing line as the dominant direc-
tion d1 for the particular object. Using d1, we then determine the
other direction d2 on the xy-plane as the direction orthogonal to d1.
Finally, along the directions d1, d2, and d3 = z, we get rays, two for
each direction, that touch the object segmentation boundary (see
Figure 4). We use these rays to extract the object boundary as the
refined hexagon.

If the object in Ri is (approximately) a cuboid without any occlu-



sion, then the hexagon agrees with CH(∂Ri). Objects, however,
can be occluded. We use the hexagon to estimate such occluded
corners. Based on the observation that any triplet of adjacent edges
of a hexagon corresponds to cuboid axes and uniquely determines
a candidate cuboid, we iterate through all such triplets to create a
set of candidate cuboids, say {Pi} (see supplementary video). Note
that at this stage, all candidate proxies are assumed to rest on the
ground and possible stackings are handled later. As an initial esti-
mate, we retain the best matching proxy based on the (minimum)
deviation from the hexagon edges H and (the convex hull of) the
segmentation Ri measured as (see Figure 5):

E f (Ri,H) :=
#(Ri \ H) + #(void H)

#(Ri)
,

where #(·) denotes the area of the polygon and (void H) denotes
the area inside hexagon H that is not covered by any segment.

Thus, based on each segment Ri, we get a camera calibration and a
set of scene proxies. We select the combination with the minimum
deviation score. Note when estimated from an occluded region, the
camera matrix poorly explains the other regions and is discarded.
Even then, any error in the initial camera calibration results in the
deviation of the fitted proxies (see Figure 4). Next, to reduce bias
from the selection of the base proxy, we jointly optimize the camera
and the box parameters.

#(Ri \ H)

#(void H)

Figure 5: Measuring error E f (Ri,H) between region Ri (in blue)
and hexagon H (in yellow), i.e., projected proxy P̃i.

c) Joint optimization. In order to minimize the total fitting error
(i.e.,

∑
i E f (Ri,Hi)), we introduce an iterative approach to pro-

gressively align the 3D scene to the image scene. Let us denote
the new hexagon (in 2D) for each cuboid Bi as H∗i . We now re-
fine the scene estimate by accounting for both image features and
the 3D scene structure. Each cuboid has six parameters, name-
ly {li

1, li
2, li

3, t
i
x, t

i
y, θ

i}. Note that, for the base proxy, we have
l0
3 = 1.0, t0

x = t0
y = θ

0 = 0, while for the others (t i
x, t

i
y, θ

i) we de-
note the offset and orientation of the cuboid Bi vector with respect
to the base cuboid B0 on the xy-plane. Thus, each cuboid adds 11
3D→2D constraints (six constraints from corners with scale ambi-
guity). We then optimize the camera parameters together with the
parameters of each 3D cuboid in a non-linear optimization whose
objective function is the reprojection error of each (visible) cuboid
point with respect to its corresponding image point, i.e., corners
of Hi. Since we have a good estimate of the scene (see part-b),
we optimize using the Levenberg-Marquardt method for one or two
iterations using Levmar [Lourakis 2004] (see Figure 4).

d) Resolving ambiguities. We now consider mutual relations
across proxies (e.g., occlusion, stacking) and resolve the ambigu-
ities using a joint formulation. We describe how to resolve occlu-
sions by extracting a plausible ordering by jointly reasoning in 2D
and 3D (note that the camera remains fixed in this stage).

Candidate generation. Let the set of initial scene proxies be
S := {{P1}, ..., {Pn}} corresponding to the n regions, assuming that
all the proxies rest on the ground plane (later we describe how to
handle stacking). Note that each region can produce multiple can-
didate proxies {Pi} as described in part-b. We mark regions Ri and
R j as potentially occluding, if, for some a ∈ {Pi} and b ∈ {Pj}, the
image-space projections of a, b overlap. This significantly prunes

candidate proxy sets

extracted proxies with
occlusion and stacking resolved

stacking
graph

Figure 6: In the case of occlusion and stacking among objects in
segmented regions, we reason with pairs of regions, leading to a
binary term, and solve for a consistent assignment via an MRF
formulation.

the candidate set (see supplementary video). Let P denote the set
of all such pairs of proxies.

MRF formulation. For each region Ri only a single proxy should be
selected from {Pi}. The selection, however, depends on global ef-
fects, and hence all the regions have to be considered simultaneous-
ly. Effectively, we have a labeling problem in which the selection of
each proxy from {Pi} depends on a certain data cost, i.e., how well
the proxy explains the corresponding region, and the selection of
pairs depends on a mutual-cost due to occlusions. Since the general
labeling problem is difficult, we simultaneously optimize over the
label possibilities in a Markov Random Field (MRF) formulation.
We define the optimization energy as follows:

El :=
∑

i

u(Ri → li) + β

∑
(i, j)∈P

c(Ri → li,R j → l j), (1)

where u(.) is the unary cost, c(.) is the pairwise cost, β is the
weighting factor (set to 10 in our tests) and li is the labeling function
denoting which proxy among {Pi} is selected for Ri.

The unary term measures the cost of selecting a candidate among
the |{Pi}| possibilities. We measure it based on how well a proxy
fits the underlying segmentation boundary, with a lower score de-
noting a better fit. In particular, for each li ∈ {1, . . . , |{Pi}|}, we
compute u(·) as follows:

u(Ri → li) := E f (Ri, P̃i), (2)

where P̃i denotes the proxy Pi projected to the image space using
the camera information.

For the pairwise cost, we measure if the occlusion ordering derived
from the proxies agrees with that observed in the image, i.e., if at
pixel p, P̃i occludes P̃j, then p ∈ Ri \ R j. We capture this as,

c(Pi → li,Pj → l j) := er1 er2 − 1 where, (3)

r1 =
#(Ri ∩ (P̃j occ P̃i))

#(Ri)
, r2 =

#(R j ∩ (P̃i occ P̃j))

#(R j)
,

and (P̃j occ P̃i) denotes the pixels where P̃j occludes P̃i (using cor-
responding depth information). Again, a lower value denotes better
agreement with 3D proxies, i.e., r1 = r2 = 0 if the projected prox-
ies agree with the corresponding region labels. Note that unlike
scene understanding scenario (see [Gupta et al. 2011] and refer-
ences therein), we benefit from having segmentation information
and hence can obtain tighter 3D proxies without restriction to axis-
aligned scenes.



Stacking proxies. Until now, we assumed that all the proxies rest
on the ground. In order to handle stacking, we perform a simple
modification: When regions Ri and R j are marked to interfere, we
spawn new candidate proxies appropriately. For example, for each
b ∈ {Pj}, we create new proxies for Ri assuming that they rest on b,
i.e., their base is coplanar to the top of b, and add them to {Pi}. Sim-
ilarly, we create new candidates assuming that they rest on top of
a ∈ {Pi}. The optimization energy is computed similarly as before
(see Equation 1).

When there are more than three objects in a stack, the size of the
generated candidates can become very large (it is exponential to
number of stacking objects). We use a simple heuristic to trim the
candidate set: Given two stacked objects, we leverage the corre-
sponding image segments to eliminate ambiguity since we have the
camera information. In particular, suppose that A lies on B. Then,
any pixels of segment of A will not be occluded by B (using their
hexagons). This excludes the option of B being on A. We build
a graph with each directed edge A → B indicating the possibility
that A lies on B. With this graph, we can remove such obviously
bad candidates and also infer the maximum level of stacking (see
Figure 6).

Label assignment. We extract the best labeling by minimizing E-
quation 1 over all possible choices, i.e., Πi|{Pi}|. In our examples,
since the number of such possibilities is limited, we exhaustively
search the solution space, e.g., in the toy bricks example, we test
80 labeling possibilities (after pruning). Advanced optimization
techniques like genetic programming or MRF optimization can al-
ternately be used.

e) Global optimization. Having extracted a consistent set of 3D
cuboid proxies, we next look for relations across them. We consider
placement, coplanarity among faces, equal attributes, and also rep-
etitions (other relations can be incorporated, if desired). Since we
work with cuboids, such relations are easily extracted by comparing
the length, width, and height of the proxies, with equivalence estab-
lished using a default threshold of 1% of the box’s diagonal length.
Although this worked well in our examples, user intervention may
be necessary in other images. We add the extracted relations as
(non-local) constraints and re-estimate the scene and camera as in
part-c. Thus, at this stage, we have a (globally) calibrated camera
along with a consistent set of optimized proxies with the inter-proxy
occlusion and stacking resolved and their mutual relations extract-
ed.

f) Removing void sub-cuboids. In order to model non-convex
man-made objects, certain sub-volumes of the corresponding box-
proxies should be empty. Hence, we first decompose a cuboid into
sub-cuboids by using cutting planes aligned with the faces of the
cuboid, and then remove the redundant sub-cuboids (see Figure 7).

Cutting plane identification. For each region Ri, we obtain three
sets of vanishing points using the projected box proxy P̃i. We then
split the boundary ∂Ri (instead of its convex hull) into line segments
using dynamic programming. We align each such line segments
to the closest extracted direction (measured using the image-space
angle). For example see yellow/blue lines in Figure 7-left.

We use the extracted line segments to generate a set of potential
candidate cutting planes aligned to the proxy faces. Each extracted
line segment l j produces cutting planes along two directions. We
ignore those planes that coincide with a cuboid face since they do
not cut the cuboid. For each extracted edge l j, if there are multiple
candidate planes along a particular direction, we retain the one that
covers the largest area of Ri. The cutting planes decompose the
cuboid into sub-cuboids, say Ω.

Figure 7: For non-convex objects, we use the boundary segment
lines to generate cutting planes aligned to the proxy faces to decom-
pose the proxy. We then remove void sub-cuboids using a greedy
strategy. In complex cases, user intervention may be required.

Redundancy removal. We use a greedy algorithm to remove redun-
dant sub-cuboids from the candidate set. We assign a score to each
sub-cuboid in Ω based on the number of object segmentation pixels
the projected sub-cuboid covers: the larger the score, the smaller
the possibility of the sub-cuboid being redundant. Let Ωo denote
the unremovable sub-cuboids, each of which solely covers certain
parts of Ri. We then greedily select the element of Ω \ Ωo with
the smallest score and delete it if the removal does not split the
existing sub-cuboids into disconnected components. Finally, we
perform non-local relations detection to identify sub-cuboids that
are coplanar, regularly spaced, or of equal thickness and that con-
form to the realtions as described in part-e. Again, since we only
have box proxies, we simply detect such relations by comparing
their attributes.

For complex objects, e.g., sofa, or objects with curved profiles, the
automatic decomposition can fail. We then allow the user to manu-
ally add or remove some cutting planes (e.g., the user removes the
red planes in Figure 7; see also the supplementary video).

5 Image Decomposition

In this stage, we use the extracted 3D proxies to create image layers.
First, we estimate the light position and inter-proxy shadows. We
then use the information to identify texture regions to fill in (due to
occlusion or shadows), complete such regions, and decompose the
input image into a background layer and textured 3D proxies along
with their extracted mutual relations (see Figure 9).

The user marks two or more 3D proxies and shadow correspon-
dences, and then we automatically estimate the light region and
shadow polygons, as described next. Note that although automatic
(data-driven) shadow detection algorithms are available [Guo et al.
2011], we found them not to be suitable for complex scenes.

Note that any user-marked shadow correspondence is of the form
(proxy corner → ground plane point). Each such correspondence
defines a ray in 3D. For each annotated region Ri, we use two
such rays to estimate a 3D light position, say li, as the point with
the minimum sum of the squared distance to the rays (in the least
squares sense). We use the light position li to get a shadow bound-
ary Si (assumed to be on the ground) for the 3D proxy Pi in each
region Ri. Now we look for a single light position lp that best ex-
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Figure 8: The collection of cuboid-proxies provides intuitive manipulation possibilities. (Left-to-right) We can translate, rotate, scale, free-
form deform a proxy; change their stacking and relative ordering; or perform discrete edits or insert new scene objects, while preserving
original non-local relations, e.g., objects remain on the ground plane (see Figures 6 and 7 for original images).

plains all Si-s. Based on Pi and lp, we parameterize the shadow
polygon on the ground as f (Pi, lp). We refine the light estimate
lp such that f (Pi, lp) ≈ Si (in a least squares sense) using an it-
erative ICP-like method, alternately assigning correspondence be-
tween f (Pi, lp) ↔ Si and estimating lp. We run the optimization
initialized by lp ← li and take the best solution. Experimentally,
we found this approach to provide satisfactory shadow and light
estimates even for complex scenes.

To create the background layer, we take the union of the projected
proxy and the refined shadow, dilate (by 10-20 pixels) and remove
the region, and perform image completion [Barnes et al. 2009] (see
Figure 9). For each of the proxies, we perform two steps: (i) Based
on the light position lp, we estimate the inter-proxy shadow effects
and perform image completion to recover the parts in the shadows.
(ii) Further, for invisible faces (due to occlusion or backfacing), we
use symmetric regions to fill in missing texture. Note that for sym-
metry we simply use information from the same proxy (reflection-
al symmetry of the cuboid), although more complex texture-based
similarity detection can be performed.

Finally, along with the textured proxies, we also store the mutu-
al relations among them (e.g., resting on the ground, repetitions,
coplanarity, etc.) and use the information for constrained editing.

inter-object
shadow

shadow
on ground

Figure 9: The user marks a few correspondences across prox-
y corners and shadow corners (top-left), which are then used to
initialize and optimize the light position and shadow boundaries.
The extracted shadows (top-right) can either be ground plane shad-
ows (in red), or inter-proxy shadows (in blue). We extract the object
segments and associated shadows (in green, bottom-right) and use
image completion to create a complected background layer and re-
store parts of the proxies in the shadows (bottom-left).

6 Proxy-based Edits

We enable smart object-level image manipulations using the ex-
tracted 3D proxies and their relations. Recall that each region Ri is
represented by a single cuboid, or a set of sub-cuboids {Pi} with
their intra-cuboid relations. Further, we have a set of non-local
relations across proxies from different regions. In our framework,
we consider placement, repetition, alignment (e.g., cuboids are ver-
tically aligned), coplanarity, and parallelism, prioritized in decreas-
ing order.

Interaction possibilities. Given the extracted 3D proxies, we re-
alize basic operations with objects, e.g., translate, rotate, scale, or
stack, to mimic real-world experience (see Figure 8). We support
real-time interactions while optional collision handling (using the
open-source physics simulator Box2D) and displaying simple shad-
ow effects (see the supplementary video). Advanced appearance
and rendering effects can possibly be integrated (see [Karsch et al.
2011]).

Importantly, we allow the user to manipulate objects while respect-
ing the extracted relations. The user initiates an edit using a se-
lected single cuboid, and then we automatically propagate the edit
to the other proxies in the scene. We use the propagation strategy
of [Gal et al. 2009; Zheng et al. 2011], which is fast and suitable
for interactive performance. Note that during any interaction, the
ground plane remains fixed, and objects placed on the ground are
constrained such that z = 0 for their base plane, unless we lift the
objects. The edit propagation happens in two stages: (i) for intra-
object propagation among the sub-cuboids, say {P1}, we directly
use the iWires framework [2009]; (ii) for inter-object propagation,
we design a simple symmetry-and-proximity based extension, as
described next.

Let, Φ← {P1} be the set of sub-cuboids that are already handled in
the intra-object propagation stage. Next, we find the proxy set {Pi}
with the closest proxy to elements in Φ and update all the elements

Figure 10: Users can provide high-level annotations: (top) the two
proxies are marked to share a hinge joint; (bottom) the drawers are
marked to be sliding inside the bed frame. Our framework computes
the necessary joint attributes based on proxy geometry, making the
images interactive (see the supplementary video and demo).



Figure 11: Repeated edits on building examples showing both discrete and continuous changes.

of {Pi} according to their relations to elements in Φ. (Conflicts,
if any, are resolved using the priority ordering, and ties are broken
arbitrarily.) For example, if a face f ∈ Φ is coplanar to g ∈ {Pi},
then lifting f in the intra-object propagation lifts g in the inter-
proxy stage to restore coplanarity. Effectively, edits affecting Φ

act as deformation handles to proxies in {Pi} and then we again
apply intra-object propagation to the remaining elements in {Pi}
to maintain their original shape characteristics. Note that unless
indicated by users, we do not modify proxy sizes. We then add
Φ ← Φ ∪ {Pi} and continue the propagation until there is no re-
maining proxy set to handle. Note that the process stops as soon as
all related proxies are touched once. Further, for proxy sets that are
repeated, the edits are copied over up to corresponding repetition
transforms (see Figures 10, 12, and the supplementary video).

7 Evaluation

We tested our implementation on a variety of input images. We use
OpenCV for basic image processing operations and PatchMatch for
image completion as necessary. The core implementation efforts
were in the analysis stage, which involves simultaneous optimiza-
tion over multiple variables (using Levmar). Typically, for a scene
involving 5-10 annotated objects, the optimization runs in a couple
of seconds, since we have good initialization extracted from the
individual regions (see parts 4a and 4b). The MRF optimization for
resolving occlusion and stacking, however, can take longer depend-
ing on the complexity of the scene and the size of the candidate sets.

input imageinput image
extracted proxies

+ relations
extracted proxies

+ relations

edit 1edit 1 edit 2edit 2

Figure 12: Edit propagation: When we lift the tabletop, the other
tables also are vertically scaled to maintain coplanarity, while al-
so retaining contact to the ground. Subsequently, objects resting,
i.e., the placement relation, on the tables also are raised. However,
when a table is rotated, only the objects stacked on it are affected.

We achieved interactive results even with up to 100 candidates (see
the supplementary video and demo).

User assistance. Starting from (roughly) segmented images, our
system works in the automatic mode for simple scenes. For com-
plex scenes or regions with non-boxy shapes, we expect user in-
tervention. Such interactions can be categorized as: (i) adjusting
initial estimates for the cuboid corners (Figures 1, 11-left, 14, 16-
bottom), (ii) helping with identifying image lines for decomposition
(Figures 1, 7-bottom, 15-bottom-left, 14), and (iii) annotating types
of joints between proxies (see Figure 10). Note that due to our joint
optimization and MRF formulation, rough user strokes are suffi-
cient to initialize the global optimization, which then adjusts the
annotations. Even in complex examples (Figures 1 and 14), user
interaction was limited to 1-2 minutes, including GrabCut strokes
(leaving out the image browsing time).

Comparison with ground truth. We compared our manipulation
results with ground truth to evaluate the accuracy and plausibility
of the manipulated images. In Figure 13, we set up a scene with
objects of various difficulty depending on how well they can be
approximated by cuboids and on how symmetric their textures are.
When the objects are close to cuboids, we get high-quality mod-
els and shadows, which are difficult to quickly differentiate from
ground truth photographs. In the case of the skull, however, the
shadow is visibly boxy (under harsh light) even though the shape
itself follows the ground truth quite well. If we rotate the skull,
however, then the illusion quickly breaks down. Further, in the case
of semi-transparent objects, we found that although translations and
small rotations work plausibly, with moderate rotations the warped
transparent interior causes artifacts (see the sharpener in Figure 2).

Image comparison. In the above example, the original images

edit 1→ 2

edit 2→ 1

photo 2

photo 1

Figure 13: Comparing proxy-based editing of images to ground
truth manipulation in 3D. Note that the object poses and their shad-
ows are realistic with user interaction being limited to GrabCut-
based segmentation in the analysis phase and shadow correspon-
dence annotation. The skull is badly approximated by a cuboid
proxy resulting in the blocky shadow under strong light.
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Figure 14: Virtual shopping and room redesign. Starting from a single image of a room, and images collected from product catalogs, the
user can quickly visualize how the objects will look in her room. Note that objects are automatically resized based on original scene proxies,
while individual objects can be rotated, translated as desired. In this example, the user spends less than a minute to rig up the proxies.

have high pixel-level differences, i.e., the mean squared error
MSE(1, 2) = 0.17 (with color channels in the range of 0 − 1). In
contrast, MSE(1, 2 → 1) = .018 and MSE(2, 1 → 2) = .02 indi-
cating that content of the two images are very similar if we factor
out (ground) plane translations and rotations that do not affect the
scene-space relations. This hints at the possibility of a new image-
space similarity measure to factor out variations due to geometric
arrangements, closer to our semantic perception of scenes.

User interaction. Since we preserve extracted relations across
the proxies, effectively, only the useful degrees of interaction are
exposed to the user. For example, a translation is mapped to trans-
lating the selected object while preserving coplanar relations, or
(optional) handling of collisions as we move parts around, or trans-
lating a drawer results in only opening/closing the same (see the
supplementary video and demo).

User study. In order to evaluate the effectiveness of our system, we
asked users to distinguish between original images and our edit-
ing results. We prepared 13 image pairs of original image and
a corresponding editing results (see the supplementary material).
Note that the edited results were direct outputs of our system and
were not rendered offline. Further, some of the input images were
rendered scenes obtained from online scenes (e.g., in product cata-
logs). Each user was shown a random selection of 13 images, one
from each pair, and given a maximum of 5 seconds to classify the
image as real or fake. The user study comprised of 44 participants
mostly computer science graduates, with many having backgrounds
in computer graphics. On average, users recognized 63.2% real
images as real, and 44.5% fake images as fake.

In Figure 15, we compare our system with state-of-the-art image
analysis techniques. Note that the semi-automatic methods produce
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Figure 15: State-of-the-art algorithms (e.g., [Gupta et al. 2011])
assume axis-aligned objects, produce coarse proxies (insets), or
fail when assumptions are violated (e.g., on the left image). Having
access to segmentation allows us to produce tighter cuboid-proxies.

proxies that are not ideal for manipulating the objects, although they
are sufficient for inserting new synthetic 3D objects [Karsch et al.
2011]. Further, the methods are restricted to axis-aligned objects.
In our context, however, simple segmentation strokes are sufficient
to enable proxy-based segmentation. Alternately, a purely image-
based method like RepFinder [Cheng et al. 2010] is also unsuitable,
especially when the scene contains perspective distortions and oc-
clusions, or for interactions involving perspective changes.

Repeated edit. Figure 11 shows examples of repeated edits. Note
that we factor out rotations and translations across objects to detect
repetitions (see also Figures 6 and 12). We detect repetitions at the
level of the proxies, but when transferring texture information, we
verify color consistency before consolidating color/texture across
proxies. Note that the facade example is comparable to state-of-
the-art symmetry-based image resizing [Wu et al. 2010]. They
consider an image as a whole and apply insertion and removal of
repeated patterns to accommodate the resizing operator, we apply
the resizing operator directly to the image object while leaving the
other scene objects untouched. In the future, it will be interesting
to continue exploring other summarization possibilities.

Virtual shopping. Figure 1 shows a typical application of our
system. The user selects a set of images and roughly marks regions
of interest. Then, we recover cuboid-based scene abstractions for
the selected objects — note that our inputs are just images and not
3D objects. More importantly, we identify relations across the ob-
jects in each individual image (e.g., table tops are aligned to seating
areas). Now, the user can move objects across scenes — in our
framework, we restore the original relations, e.g., the table height
is adjusted, the sofas are scaled anisotropically to fit in the original
setting. Note that although the original scene has multiple light
sources, we calibrate to only one source, and hence obtain a single
directional shadow. Figure 14 shows another example. The user
can also individually edit (e.g., rotate) objects to fine tune the layout
(see the supplementary video). Note that in addition to coplanar and
parallel relations, it can be interesting to consider relative heights
between parallel surfaces, say between a chair seat and a desk. We
leave this to future efforts possibly enabling function-aware scene
understanding.

Limitations. When the input scene assumptions listed in Sec-
tion 3 are violated, different artifacts can arise. Limitations include:
(i) Failing to automatically detect good cuboid-proxies for scenes
with curved chairs or sofas, etc., or cluttered workspaces with ca-
bles, bags, or heaped objects. The user can, however, manually
adjust the estimated hexagon corners, while we jointly optimize
the extracted constraints to regularize the results (see Figure 16);
(ii) Non-boxy objects in the scenes (e.g., the teapot in Figure 11, or
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Figure 16: Limitations. Poor proxies produce implausible shad-
ows (top); objects with soft edges and occlusions lead to bad initial
hexagon estimates, which have to be manually refined (bottom).

the skull in Figure 13) produce noticeable distortions under rotation
due to imprecise proxies. Semi-transparent objects (e.g., the pencil
sharpener in Figure 2) and their shadows can appear distorted under
rotations; (iii) Texturing artifacts arise when our symmetry-based
texture copying fails, e.g., the back of the laptop, parts of the build-
ing blocks, or artifacts on the plants in the living room scenes (see
the supplementary video); (iv) Finally, we fail to automatically infer
relations without sufficient geometric clues, e.g., drawers or hinge
joints have to be annotated (see Figure 10). Similarly, in absence of
sufficient image edges, room walls are not reconstructed.

8 Conclusion

We presented an interactive system for smart editing of images of
man-made scenes. In the analysis phase, based on user-provided
segmentations, we propose a joint optimization to simultaneously
recover camera calibration, generate cuboid-based proxies, and ex-
tract their non-local relations. We show that although the cuboids
provide only a partial abstraction of the scene, they are sufficient to
decompose the image into a background layer and textured proxies
linked via non-local relations. In the interaction phase, the repre-
sentation can then be used towards smart image editing mimicking
real-world experiences.

In the future, we plan to explore the following directions: (i) A
natural continuation is to jointly estimate geometry and appearance
parameters in order to obtain quality scene understanding. Ini-
tial leads are provided by the recent work of Karsch et al. [2011]
who demonstrate that convincing appearance modeling is possible
with synthetic 3D object insertion. (ii) Although simple scene-
level changes can result in large errors in image-level similarity
measurements, such images often have very similar proxy-based
representations (see Figure 13), thus providing new image compar-
ison possibilities. One challenge, however, is how to automatically
segment the images into meaningful regions. (iii) Although we fo-
cused on cuboid-proxies, other proxies like spheres, cylinders, and
cones can possibly be incorporated. Further research is needed to
evaluate the merits of such a generalization. (iv) Finally, in the con-
text of 3D models, co-location priors have been shown to greatly
simplify content retrieval and scene modeling tasks [Fisher et al.
2011]. We plan to investigate the use of such priors directly in the
context of images using proxy-based representations, while making
use of associated image level segmentation and keywords. Anoth-
er interesting direction to pursue is how to automatically animate
images of mechanical assemblies [Mitra et al. 2010].
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